

INVENTORY OF CARBON & ENERGY (ICE)

Version 1.6a

Prof. Geoff Hammond & Craig Jones

Sustainable Energy Research Team (SERT)

Department of Mechanical Engineering

University of Bath, UK

This project was joint funded under the Carbon Vision Buildings program by:

Making business sense of climate change

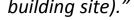
TRUST

Available from: www.bath.ac.uk/mech-eng/sert/embodied/

Peer Review Source: Hammond, G.P. and C.I. Jones, 2008, 'Embodied energy and carbon in construction materials', *Proc. Instn Civil. Engrs: Energy*, in press.

DISCLAIMER

Whilst efforts have been made to ensure the accuracy of the information contained in the Inventory of Carbon & Energy (ICE), the content is subject to change and the University of Bath cannot guarantee its accuracy or right to make changes currency. The University reserves the to the information in ICE without notice. The information is consequently provided "as is" without any representation or warranty as to accuracy, currency, quality or fitness for purpose of any kind. You should independently verify information contained any ICE before relying in on it.


The University of Bath does not make any representation nor give any warranty as to the ownership of the copyright of any material forming part of ICE and does not accept any liability for any direct, indirect, incidental or consequential losses arising from the infringement of any third party rights in relation to any material in ICE.

Inventory of Carbon & Energy (ICE)

Welcome to the Inventory of Carbon & Energy (ICE) Version 1.6a. ICE is the University of Bath's embodied energy & embodied carbon database, and is the freely available summary of the larger ICE-Database. The aim of this work was to create an inventory of embodied energy and carbon coefficients for building materials. The data has been collected from secondary resources in the public domain, including journal articles, Life Cycle Assessments (LCA's), books, conference papers...etc. There has been no use of subscription based resources due to potential copyright issues. To aid in the selection of 'best' coefficients it was required to create a database (called the ICE-Database). This database stores relevant information from the literature (i.e. Country of data, year, boundaries, report specifics (Data source), notes...etc). At the time of writing the ICE-Database contained over 1,700 records on embodied energy. The work presented here is a summary of the information contained within the larger ICE-Database. This report has been structured into 34 main material groups (i.e. Aggregates, Aluminium...etc), a material profile was created for each main material. For an introduction to these profiles please see the 'Material Profiles Guide'.

EMBODIED ENERGY (CARBON)

"The embodied energy (carbon) of a building material can be taken as the total primary energy consumed (carbon released) over its life cycle. This would normally include (at least) extraction, manufacturing and transportation. Ideally the boundaries would be set from the extraction of raw materials (inc fuels) until the end of the products lifetime (including energy from manufacturing, transport, energy to manufacture capital equipment, heating & lighting of factory, maintenance, disposal...etc), known as 'Cradle-to-Grave'. It has become common practice to specify the embodied energy as 'Cradle-to-Gate', which includes all energy (in primary form) until the product leaves the factory gate. The final boundary condition is 'Cradle-to-Site', which includes all of the product has reached the point of use (i.e.

Data on embodied energy & carbon data was not always determined to have complete boundary conditions (e.g. the energy not traced back to the earth, electricity not traced upstream...etc). However, incomplete data often contained enough substance to have a useful role when estimating embodied energy coefficients. Cradle-to-Gate was the most

1

commonly specified boundary condition and was selected as the ideal scope of this study. This has been revised from the previous ideal of cradle to site. It is now encouraged for the user to consider the impacts of transportation for their specific case. It should be noted that the boundary conditions for each material are specified within the material profiles. Data intricacies and inconsistencies made it very difficult to maintain the same boundary conditions for the entire inventory. In a few cases Cradle-to-Grave has been specified due to the original data resources. In many cases, and certainly for materials with high embodied energy and high density, the difference between Cradle-to-Gate and Cradle-to-Site could be considered negligible. Although this will certainly not be true for materials with a very low embodied energy per kilogram, such as aggregates, sand...etc.

ICE contains both embodied energy and carbon data, but the embodied energy coefficients carry a higher accuracy. One of the reasons for this was that the majority of the collected data was for embodied energy, and not embodied carbon. It was therefore necessary to estimate the embodied carbon for many materials. Ideally the embodied carbon would be derived from an accurate Life Cycle Assessment; however this was not normally the case. Many of the embodied carbon coefficients within ICE were estimated by the authors of this report. In these cases the embodied carbon was estimated from the typical fuel mix in the relevant UK industries. This method is not perfect, but it must be remembered that neither are the results from Life Cycle Assessments (the preferred source). It remains vastly superior to applying a common conversion factor from embodied energy to embodied carbon across the whole dataset.

From analysing the ICE-Database it was estimated that approximately 40% of the collected data either specified the embodied carbon, a global warming potential (or similar method of greenhouse gas measurement) or a fuel mix (from which the carbon emissions could be estimated). Of this 40% around half were the less useful (to estimating embodied carbon (dioxide)) GWP or fuel mix, therefore only 20% of authors were specifying a useful embodied carbon. Consequently the author had less data to verify embodied carbon coefficients. Another reason for greater uncertainty in embodied carbon was a result of different fuel mixes and technologies (i.e. electricity generation). For example, two factories could manufacture the same product, resulting in the same embodied energy per kilogram of product produced, but the total carbon emitted by both could vary widely dependent upon the mix of fuels consumed by the factory.

The nature of this work and the problems outlined above made selection of a single value difficult and in fact a range of data would have been far simpler to select, but less useful to apply in calculations. There are several openly available inventories similar in nature to this one, and more subscription basis ones. Comparison of the selected values in these inventories would show many similarities but also many differences. It is rare that one single

value could be universally agreed upon by researchers within this field of work. Uncertainty is unfortunately a part of embodied energy and carbon analysis and even the most reliable data carries a natural level of uncertainty. That said results from ICE have proved to be robust when compared to those of other databases.

Caution must be exerted when analysing materials that have feedstock energy. Feedstock energy is the energy that is used as a material rather than a fuel, e.g. oil and gas can be used as a material to manufacture products such as plastics and rubber instead of direct combustion. When collecting data it was not always apparent if feedstock energy was included or excluded from the data. For this reason the values in the ICE-Database are stored as reported in the literature, hence the records in the database needed to be manually examined. The database statistics may prove misleading in some instances (some records include feedstock energy, some exclude it and others were unknown). The feedstock energy in this inventory was identified and is included in the total embodied energy coefficients in this report.

The next page explains the criteria for selection, which was used when estimating embodied energy & embodied carbon.

For the authors' contact details or to download further copies of this report please visit:

Selection Criteria

The criteria used to estimate the embodied energy & carbon are displayed below. Due to the difficulties experienced when selecting these values the criteria needed to be flexible but maintain an ideal set of conditions. One of the main difficulties was inconsistent & poor specification of data in the literature, i.e. different and incomplete boundary conditions and authors not reporting enough detail on the scope of their study.

Five criteria were applied for the selection of embodied energy and carbon values for the individual materials incorporated into the ICE database. This ensured consistency of data within the inventory. The criteria were:

1-Compliance with Approved Methodologies/Standards: Preference was given to data sources that complied with accepted methodologies. In the case of modern data an ideal study would be ISO 14040/44 compliant (the International standard on environmental life cycle assessment). However, even studies that comply with the ISO standards can have wide ranging and significant differences in methodology, as such further selection criteria were necessary, thus ensuring data consistency. A recycled content, or cut-off approach, was preferred for the handling of (metals) recycling.

2-System Boundaries: The system boundaries were adopted as appropriate for 'cradle-togate' embodiment. Feedstock energy was included only if it represented a permanent loss of valuable resources, such as fossil fuel use. For example, fossil fuels utilised as feedstocks, such as the petro-chemicals used in the production of plastics, were included (although identified separately). However, the calorific value of timber has been excluded. This approach is consistent with a number of published studies and methodologies. The effects of carbon sequestration (for example carbon that was sequestered during the growing of organic materials, i.e. timber) were considered but not integrated into the data. For justification of this decision please see the timber material profile. Non-fuel related carbon emissions have been accounted for (Process related emissions).

3-Origin (Country) of Data: Ideally the data incorporated into the ICE inventory would have

been restricted to that emanating from the British Isles. But in the case of most materials this was not feasible, and the best available embodied energy data from foreign sources had to be adopted (using, for example, European and world-wide averages). A much stronger preference was given to embodied carbon data from UK sources, due to national differences in fuel mixes and electricity generation. **4-Age of the Data Sources:** Preference was given to modern sources of data, this was especially the case with embodied carbon; historical changes in fuel mix and carbon coefficients associated with electricity generation give rise to greater uncertainty in the embodied carbon values.

5-Embodied Carbon: Ideally data would be obtained from a study that has considered the life cycle carbon emissions, for example via a detailed LCA, but there is often an absence of such data. In many cases substitute values therefore had to be estimated using the typical fuel split for the particular UK industrial sector. British emission factors were applied to estimate the fuel-related carbon. Additional carbon (non-energy related, i.e. process related carbon) carbon was included.

In addition to these selection criteria the data primarily focused on construction materials. The embodied energy and carbon coefficients selected for the ICE database were representative of typical materials employed in the British market. In the case of metals, the values for virgin and recycled materials were first estimated, and then a recycling rate (and recycled content) was assumed for the metals typically used in the marketplace. This enabled an approximate value for embodied energy in industrial components to be determined. In order to ensure that this data was representative of typical products (taking timber as an example), the UK consumption of various types of timber was applied to estimate a single 'representative' value that can be used in the absence of more detailed knowledge of the specific type of timber (i.e., plywood, chipboard, softwood, ...etc.). Finally it was aimed to select data that represented readily usable construction products, i.e., semifabricated components (sections, sheets, rods...etc. which are usable without further processing), rather than (immediately) unusable products such as steel billet or aluminium ingot.

Notes

Transport

In the previous versions of ICE the boundary conditions were ideally selected as cradle to site. This was based on the assumption that in many cases transport from factory gate to construction site would be negligible. Whilst this may be true for many materials, and normally true for high embodied energy and carbon materials, this is not exclusively the case. In the case of very low embodied energy and carbon materials, such as sand and aggregates, transport is likely to be significant. For these reasons the ideal boundaries have been modified to *cradle to gate* (from the previous cradle to site). This decision will also encourage the data users to estimate transport specific to their case in hand. This should act as a further check to ensure transporting the selected material many thousands of miles around the world does not create more energy and carbon than a local alternative.

To estimate the embodied energy and carbon of transport it is recommended that users start with the following resources (in no particular order):

- DEFRA, 2007. "Guidelines to Defra's GHG conversion factors for company reporting" <u>http://www.defra.gov.uk/environment/business/envrp/pdf/conversion-factors.pdf</u>
- European Commission's information hub on life cycle thinking based data, tools and services. <u>http://lca.jrc.ec.europa.eu/lcainfohub/index.vm</u>
- Data in LCA software and databases such as SimaPro, GaBi or Ecoinvent.

Recycling Methodology (Particularly Metals)

When applying the ICE data it is important to ensure that the ICE recycling methodology is consistent with the scope and boundaries of your study, especially for metals. It is particularly important that recycling methodologies are not mixed. This could occur with the use of data from different resources. If this is the case then care must be exerted to ensure

that all of the data is applied in a consistent manner. Some of the ICE data (especially if classified as a 'Typical' or 'General' metal) has a pre-selected recycled content and this conforms to the default ICE recycling methodology.

The default ICE recycling methodology is known as the **recycled content approach.** However, the metal industries endorse a methodology that is often known as the **substitution method**. Each method is fundamentally different. The recycled content approach is a method that credits **recycling**, whereas the substitution method credits recyclability. This may be considered in the context of a building. Using the recycled content approach the incoming metals to the building could be split between recycled and primary materials. If this gives 40% recycled metals then the recycled content is set at 40%. This is a start of life method (i.e. start of life of the building) for crediting recycling. Using this method the materials entering a building takes the recycling credit (thus upstream of the building/application).

The substitution method has the opposite school of thought. In this method it is the act of recyclability that is credited and therefore it is an end of life methodology. Using this methodology the recycled content of the materials entering the building is not considered in the analysis. Instead the ability for the materials to be recycled at the end of the products lifetime is considered. For example, in the case of metals this could feasibly be taken as, say, 85% recyclability. This implies that at the end of the buildings lifetime it is expected that 85% of the metals in the building will be recycled into new products. Therefore the building will be credited to the extent that 85% of the materials (metals) will be treated as recycled (and therefore it is a substitution of primary and recycled materials, hence the name). Such a methodology may be approximated by applying a recycled content of 85%.

It is clear that the application of each methodology will yield very different results; this is particularly true for aluminium. Recycled aluminium can have a saving of 85-90% in its embodied impacts over primary aluminium. It is therefore important that an appropriate methodology for the study in hand must be selected. The methodology must be consistent with the goal and scope of the study. The authors of this work remain convinced that for construction, where lifetimes are large (60-100 years in the residential sector), the recycled content approach is the most suitable method. The present authors consider that it reflects a truer picture of our current impacts and that the substitution method may run the risk of under accounting for the full impacts of primary metal production. They believe that the advantages of the recycled content methodology fit in more appropriately with the (normal) primary motivation for undertaking an embodied energy and carbon assessment. This is normally to estimate the current impacts of its production. However if the purpose of the study is different then it may be desirable to apply a different recycling methodology.

Essentially, each method suffers from its own pitfalls and neither may be applicable under all circumstances. The ICE data is structured to identify the difference between recycled and

primary metals. The user is therefore free to apply any recycling methodology.

Things to Consider...

- **Functional units:** It is inappropriate to compare materials solely on a kilogram basis. Products must be compared on a functional unit basis, a comparative study should consider the quantity of materials required to provide a set function. It is only then that two materials can be compared for a set purpose. For example, what if the quantity of aluminium that is required to provide a square meter of façade versus the quantity of timber?
- Lifetime: Ideally the functional unit should consider the lifetime of the product. For example, what if product A lasts 40 years and product B only lasts 20 years? This may change the conclusion of the study.
- Waste: The manufacture of 1 kg of product requires more than this quantity of material. The quantity of waste must be considered. Additionally what happens to the wasted materials? Is it re-used, recycled, or disposed?
- Maintenance: What are the maintenance requirements and how does this impact on the energy and material consumption? Does the product require periodical attention, e.g. re-painting?
- **Further processing energy:** Highly fabricated and intricate items require manufacturing operations that are beyond the boundaries of this report. In the case of a whole building such a contribution could be assumed to be minimal, however the study of an individual product may require this energy to be investigated.

The following pages contain the main ICE data...

The Inventory of Carbon & Energy (ICE) – Main Data Tables

	Embodied Energy			y & Carbon Data			Comments		
	E	E - MJ/k	g	EC	EC - kgCO2/Kg		EE = Embodied Energy, EC = Embodied Carbon		
Aggregate		0.1			0.005				
General Aluminium		0.1			0.005				
General	155				8.24		13.8 MJ/kg Feedstock Energy (Included). Assumes UK ratio of 25.6% extrusions, 55.7% Rolled & 18.7% castings Worldwide recycled content of 33%.		
Virgin		218 28.8			11.46 1.69		20.7 MJ/kg Feedstock Energy (Included).		
Recycled Cast Products		<u> </u>			8.28		14.3 MJ/kg Feedstock Energy (Included). Worldwide		
Virgin		226			11.70		recycled content of 33%. 21.3 MJ/kg Feedstock Energy (Included).		
Recycled		24.5			1.35				
Extruded		154			8.16		13.6 MJ/kg Feedstock Energy (Included). Worldwide recycled content of 33%.		
Virgin Recycled		214 34.1			11.20 1.98		20.2 MJ/kg Feedstock Energy (Included).		
Rolled		155			8.26		13.8 MJ/kg Feedstock Energy (Included). Worldwide		
Virgin		217			11.50		recycled content of 33%. 20.6 MJ/kg Feedstock Energy (Included).		
Recycled Asphalt		27.8			1.67				
General		2.60			0.045		1.91 MJ/kg Feedstock Energy (Included)		
Road & Pavement		2.41			0.14		0.82 MJ/kg Feedstock Energy (Included), reference 123		
EXAMPLE: Road	2,	672 MJ/Sc	Im	134	KgCO2/S	Sqm	906 MJ/Sqm Feedstock Energy (Included)		
<u>Bitumen</u> General		47			0.48		37.7 (?) MJ/kg Feedstock Energy (Included). Feedstock taken as typical energy content of Bitumen, uncertain carbon dioxide emissions		
Brass				1					
General		44.00		2.42 (?)			poor data availability, largely dependent upon ore grade. Very poor carbon data, uncertain of estimates, which wer taken from average quoted emissions per MJ energy		
Virgin Recycled		80.00 20.00		<u>4.39 (?)</u> 1.1 (?)					
Bricks									
General (Common Brick) EXAMPLE: Single Brick	8.4	3.00 MJ per bi	ick	0.22 0.62 kgCO2 per brick		brick	Assuming 2.8 kg per brick		
Facing Bricks		8.20			0.52		Very small sample size		
EXAMPLE: Single Facing Brick Limestone	23	MJ per br 0.85	ick	1.46 kgCO2 per brick ?		' brick	Assuming 2.8 kg per brick		
<u>Bronze</u>				14(0)					
General Carpet		77.00		4.1 (?)			Reference 155		
	74.40		3.89						
General Carpet		74.40					For per square meter see material profile		
General Carpet Felt (Hair and Jute) Underlay		18.60			0.96		Reference 77		
General Carpet Felt (Hair and Jute) Underlay Nylon		18.60 67.9 to 149)	3	0.96 3.55 to 7.3	1	Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET)		18.60 67.9 to 149 106.50	 }	3	0.96 3.55 to 7.3 5.55	1	Reference 77 Very difficult to select value, few sources, large range,		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene		18.60 67.9 to 149 106.50 95.40	 9 	3	0.96 3.55 to 7.3 5.55 5.03	1	Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET)		18.60 67.9 to 149 106.50			0.96 3.55 to 7.3 5.55		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated		18.60 67.9 to 149 106.50 95.40 72.10			0.96 3.55 to 7.3 5.55 5.03 3.76		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated with Asphalt or tar)		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated with Asphalt or tar) Wool		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated with Asphalt or tar) Wool		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated with Asphalt or tar) Wool Cement General (Typical) Fibre Cement		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated with Asphalt or tar) Wool Cement General (Typical) Fibre Cement Mortar (1:3 cement:sand mix)		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90 1.40			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11 0.213		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated with Asphalt or tar) Wool Cement General (Typical) Fibre Cement Mortar (1:3 cement:sand mix) Mortar (1:4) Mortar (1:6)		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated with Asphalt or tar) Wool Cement General (Typical) Fibre Cement Mortar (1:3 cement:sand mix) Mortar (1:4) Mortar (1:1½:4½ Cement:Lime:Sand		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90 1.40 1.21			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11 0.213 0.177		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234 Portland Cement, CEM I Values estimated from the ICE Cement, Mortar & Concret		
General Carpet Felt (Hair and Jute) Underlay Nylon Polyethylterepthalate (PET) Polypropylene Polyurethane Rubber Saturated Felt Underlay (impregnated with Asphalt or tar) Wool Cement General (Typical) Fibre Cement Mortar (1:3 cement:sand mix) Mortar (1:4) Mortar (1:6)		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90 1.40 1.21 0.99			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11 0.213 0.177 0.136		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234 Portland Cement, CEM I		
General CarpetFelt (Hair and Jute) UnderlayNylonPolyethylterepthalate (PET)PolypropylenePolyurethaneRubberSaturated Felt Underlay (impregnated with Asphalt or tar)WoolCementGeneral (Typical)Fibre CementMortar (1:3 cement:sand mix)Mortar (1:4)Mortar (1:6)Mortar (1:½:4½ Cement:Lime:Sand mix)		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90 1.40 1.21 0.99 1.37			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11 0.213 0.177 0.136 0.196		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234 Portland Cement, CEM I Values estimated from the ICE Cement, Mortar & Concret		
General CarpetFelt (Hair and Jute) UnderlayNylonPolyethylterepthalate (PET)PolypropylenePolyurethaneRubberSaturated Felt Underlay (impregnated with Asphalt or tar)WoolCementGeneral (Typical)Fibre CementMortar (1:3 cement:sand mix)Mortar (1:6)Mortar (1:1:6 Cement:Lime:Sand mix)Mortar (1:1:6 Cement:Lime:Sand mix)		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90 1.40 1.21 0.99 1.37 1.18			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11 0.213 0.177 0.136 0.196 0.163		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234 Portland Cement, CEM I Values estimated from the ICE Cement, Mortar & Concre		
General CarpetFelt (Hair and Jute) UnderlayNylonPolyethylterepthalate (PET)PolypropylenePolyurethaneRubberSaturated Felt Underlay (impregnated with Asphalt or tar)WoolCementGeneral (Typical)Fibre CementMortar (1:3 cement:sand mix)Mortar (1:6)Mortar (1:1:6 Cement:Lime:Sand mix)Mortar (1:1:6 Cement:Lime:Sand mix)Mortar (1:2:9 Cement:Lime:Sand mix)		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90 1.40 1.21 0.99 1.37 1.18 1.09			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11 0.213 0.177 0.136 0.196 0.163 0.143		Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's includes feedstock's includes feedstock's, for per square meter see material profile includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234 Portland Cement, CEM I Values estimated from the ICE Cement, Mortar & Concre		
General CarpetFelt (Hair and Jute) UnderlayNylonPolyethylterepthalate (PET)PolypropylenePolyurethaneRubberSaturated Felt Underlay (impregnated with Asphalt or tar)WoolCementGeneral (Typical)Fibre CementMortar (1:3 cement:sand mix)Mortar (1:6)Mortar (1:1:6 Cement:Lime:Sand mix)Mortar (1:2:9 Cement:Lime:Sand mix)Soil-Cement		18.60 67.9 to 149 106.50 95.40 72.10 67.5 to 140 31.70 106.00 4.6 10.90 1.40 1.21 0.99 1.37 1.18 1.09 0.85			0.96 3.55 to 7.3 5.55 5.03 3.76 3.91 to 8.1 1.70 5.48 0.83 2.11 0.213 0.177 0.136 0.196 0.163 0.143 0.14	1	Reference 77 Very difficult to select value, few sources, large range, value includes feedstock's Reference 77 For per square meter see material profile, References 57,166 & 234 Portland Cement, CEM I Values estimated from the ICE Cement, Mortar & Concre Model		

Materials			y & Carbon Data			Comments		
	E	EE - MJ/k	g	EC	- kgCO2	2/Kg	EE = Embodied Energy, EC = Embodied Carbon	
eramics				-				
General		10.00			0.65		Very Large data range, difficult to select best value.	
Fittings		20.00			1.05		Reference 1	
Refractory products		5.50			0.51			
Sanitary Products			1.48					
Tile		9.00			0.59		Very large data range	
<u>lay</u>				_				
General (Simple Baked Products)		3.00			0.22		General simple baked clay products (inc. terracotta)	
Tile		6.50			0.46			
Vitrified clay pipe DN 100 & DN 150		6.19			0.45			
Vitrified clay pipe DN 200 & DN 300		7.03			0.49			
Vitrified clay pipe DN 500		7.86			0.53			
oncrete				-				
General		0.95			0.130		Use of a specific concrete specification is preferred to	
Ceneral		0.00			01100		greater accuracy.	
NOMINAL PROPORTIONS N	IETHOD (Volume), F	Proportion	ns from BS	S 8500:200	06 (ICE Ce	ement, Mortar & Concrete Model Calculations)	
1:1:2 Cement:Sand:Aggregate	-	1.39	-		0.209	-	(High strength)	
1:1.5:3	 	1.11		 	0.209		(used in floor slab, columns & load bearing structure)	
1:2:4	 	0.95		 	0.139		(Typical in construction of buildings under 3 storeys)	
1:2.5:5	 	0.93		 	0.109			
1:3:6	1	0.04		1	0.096		(non-structural mass concrete)	
1:4:8	†	0.69			0.080			
		0100	RFIN	NFORCED		TE		
For reinforcement add to selected	1							
coefficient for each 25kg rebar		0.26			0.018		Add for each 25 kg Steel per m3 concrete	
	1						1	
EXAMPLE: Reinforced RC30 (below)	2.12	(1.08 + 0.2	26 * 4)	0.241 (0.153 + 0.	018 * 4)		
		CON	CRETF R	LOCKS (IC		lodel Valu	les)	
Block - 8 MPa Compressive Strength		0.60			0.061			
Block - 10 MPa		0.67			0.074		Estimated from concrete block mix proportions.	
Block -12 MPa		0.71			0.080		Estimated from concrete block mix proportions.	
Block -13 MPa		0.81			0.098			
Autoclaved Aerated Blocks (AAC's)	3.50		0.28 to 0.375			Not ICE CMC model results		
			MISC	ELLANEC		JES	•	
	1						Literature resources suggest this value, unknown why	
Prefabricated Concrete		2.00			0.215		high!	
Fibre-Reinforced		7.75			0.450			
Concrete Road & Pavement		1.24		0.450				
EXAMPLE Road	2,	085 MJ/So	am	187.	7 KgCO2/	'Sam		
Wood-Wool Reinforced		2.08			-		Reference 12	
% Cement Replacement - Fly Ash	0%	25%	50%	0%	25%	50%	Note 0% is a standard concrete	
GEN 0	0.64	0.57	0.50	0.071	0.058	0.046	Compressive Strength C6/8 MPa	
GEN 0	0.64	0.66	0.56	0.071	0.038	0.048	C8/10; Mass Concrete, mass fill, mass foundations	
GEN 2		0.66	0.56	0.095			C8/10; Mass concrete, mass fill, mass foundations C12/15	
GEN 2 GEN 3	0.81 0.85	0.70	0.58	0.103	0.083	0.062	C12/15 C16/20	
RC20	0.85	0.73	0.60	0.112	0.089	0.066	C10/20 C20/25	
RC20 RC25	0.95	0.80	0.65	0.128	0.102	0.075	C20/25 C25/30	
RC30	1.08	0.83	0.67	0.136	0.108	0.079	C25/30 C30/37; (Strong) foundations	
RC35	1.08	0.90	0.72	0.155	0.120	0.087	C35/45; Ground floors	
						1	C40/50; Structural purposes, in situ floors, walls,	
RC40	1.17	0.97	0.77	0.169	0.132	0.096	superstructure	
RC50	1.41	1.15	0.88	0.212	0.165	0.117	C50	
PAV1	1.04	0.87	0.70	0.145	0.114	0.083	C25/30	
PAV2	1.08	0.90	0.72	0.153	0.120	0.087	C28/35	
% Cement Replacement - Blast								
Furnace Slag	0%	25%	50%	0%	25%	50%	Note 0% is a standard concrete	
GEN 0	0.64	0.50	0.54	0.074	0.050	0.040	Compropoius Strongth CG/0 MDa	
	0.64	0.59 0.69	0.54 0.62	0.071 0.095	0.059	0.048	Compressive Strength C6/8 MPa C8/10; Mass Concrete, mass fill, mass foundations	
	0.77	0.69	0.62	0.095		0.061	C8/10; Mass Concrete, mass fill, mass foundations C12/15	
GEN 1	A 04		<u></u>		0.083	0.065	C12/15 C16/20	
GEN 1 GEN 2	0.81	0.70	0.67	0.112	0.091	0.070	C16/20 C20/25	
GEN 1 GEN 2 GEN 3	0.85	0.76				0.079		
GEN 1 GEN 2 GEN 3 RC20	0.85 0.95	0.84	0.73	0.128	0.103	0.000	C25/20	
GEN 1 GEN 2 GEN 3 RC20 RC25	0.85 0.95 0.99	0.84 0.88	0.73 0.76	0.136	0.110	0.083	C25/30	
GEN 1 GEN 2 GEN 3 RC20 RC25 RC30	0.85 0.95 0.99 1.08	0.84 0.88 0.95	0.73 0.76 0.82	0.136 0.153	0.110 0.122	0.092	C30/37; (Strong) foundations	
GEN 1 GEN 2 GEN 3 RC20 RC25	0.85 0.95 0.99	0.84 0.88	0.73 0.76	0.136	0.110		C30/37; (Strong) foundations C35/45; Ground floors	
GEN 1 GEN 2 GEN 2 GEN 3 RC20 RC25 RC30 RC35	0.85 0.95 0.99 1.08	0.84 0.88 0.95	0.73 0.76 0.82	0.136 0.153	0.110 0.122	0.092	C30/37; (Strong) foundations C35/45; Ground floors C40/50; Structural purposes, in situ floors, walls,	
GEN 1 GEN 2 GEN 3 RC20 RC25 RC30 RC35 RC40	0.85 0.95 0.99 1.08 1.13 1.17	0.84 0.88 0.95 0.99 1.03	0.73 0.76 0.82 0.85 0.88	0.136 0.153 0.161 0.169	0.110 0.122 0.129 0.135	0.092 0.096 0.101	C30/37; (Strong) foundations C35/45; Ground floors C40/50; Structural purposes, in situ floors, walls, superstructure	
GEN 1 GEN 2 GEN 3 RC20 RC25 RC30 RC35 RC40 RC50	0.85 0.95 0.99 1.08 1.13 1.17 1.41	0.84 0.88 0.95 0.99 1.03 1.22	0.73 0.76 0.82 0.85 0.88 1.03	0.136 0.153 0.161 0.169 0.212	0.110 0.122 0.129 0.135 0.168	0.092 0.096 0.101 0.124	C30/37; (Strong) foundations C35/45; Ground floors C40/50; Structural purposes, in situ floors, walls, superstructure C50	
GEN 1 GEN 2 GEN 3 RC20 RC25 RC30 RC35 RC40	0.85 0.95 0.99 1.08 1.13 1.17	0.84 0.88 0.95 0.99 1.03	0.73 0.76 0.82 0.85 0.88	0.136 0.153 0.161 0.169	0.110 0.122 0.129 0.135	0.092 0.096 0.101	C30/37; (Strong) foundations C35/45; Ground floors C40/50; Structural purposes, in situ floors, walls, superstructure	

The first column represents standard concrete, created with 100% Portland cement. The other columns are estimates based on a direct substitution of fly ash or blast furnace slag in place of the cement content. The ICE Cement, Mortar & Concrete Model was applied. It was assumed that there will be no changes in the quantities of water, aggregates or plasticiser/additives due to the use of cementitious replacement materials.

Materials	Embodied Ener	gy & Carbon Data	Comments
	EE - MJ/kg	EC - kgCO2/Kg	EE = Embodied Energy, EC = Embodied Carbon
Copper_			
General	40 to 55	2.19 to 3.83 (?)	Conflicting data, possibly due to large variations in ore grade. Assumes recycled materials of 46%. See materi profiles for further details
Virgin	70 (?)	3.83 (?)	Large data range, very difficult to select possibly due to large variations in ore grade and therefore embodied
Recycled from high grade scrap	17.5 (?)	0.96 (?)	energy and carbon.
Recycled from low grade scrap	50 (?)	2.75 (?)	
Blass		• • • •	
General	15.00	0.85	Poor data availability on recycled glass. Virgin Glass releases 0.185 Kg CO2 during production processes (Additional to energy emissions) this has been factored in (Fact taken from British Glass). Recycling rate from Britis glass report towards sustainable development 2004, difficult to select embodied carbon
Fibreglass (Glasswool)	28.00	1.53	
Toughened	23.50	1.27	Only three data sources
nsulation		1	Estimated from typical market shares, Feedstock Energy
General Insulation	45.00	1.86	16.5 MJ/kg (Included)
Cellular Glass	27.00		Reference 48
Cellulose	0.94 to 3.3		
Cork	4.00	0.19	Reference 49
Fibreglass (Glasswool)	28.00	1.35	Poor data difficult to select appropriate value
Flax (Insulation)	39.50	1.70	Reference 2, 5.97 MJ/kg Feedstock Energy (Included)
Mineral wool	16.60	1.20	
Rockwool (stonewool)	16.80	1.05	
Paper wool	20.17	0.63	Reference 2
Polystyrene	See Plastics	See Plastics	see plastics
Polyurethane	See Plastics	See Plastics	see plastics
Woodwool (loose)	10.80	-	Reference 168
Woodwool (Board) Wool (Recycled)	<u> </u>	0.98	Reference 49 References 57,166 & 234
ron	20.00		
General	25.00	1.91 (?)	Uncertain
ead			-
General Virgin	25.00 49.00	1.33 2.61	Allocated (divided) on a mass basis, assumes recycling rate of 61.5%
Recycled	10.00	0.53	
· · · · · · · · · · · · · · · · · · ·			Allocated by system expansion (i.e. energy contributable
Virgin If produced with zinc	13.6 to 23.6	0.72 to 1.25	zinc by other processes)
	13.6 to 23.6 5.30	0.72 to 1.25	
<mark>ime</mark> General <u>inoleum</u>	5.30	0.74	zinc by other processes) Embodied carbon was difficult to estimate
ime General inoleum General			zinc by other processes)
ime General inoleum General liscellaneous	5.30 25.00	0.74	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range.
ime General inoleum General liscellaneous Asbestos	5.30 25.00 7.40	0.74	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4
ime General inoleum General fiscellaneous Asbestos Calcium Silicate Sheet	5.30 25.00	0.74	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range.
ime General inoleum General fiscellaneous Asbestos Calcium Silicate Sheet Chromium	5.30 25.00 7.40 2.00	0.74 1.21 - 0.13	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49
ime General General General Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric	5.30 25.00 7.40 2.00 83 27.10 143	0.74 1.21 - 0.13 5.39 1.28 6.78	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21
ime General General General Aiscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane	5.30 25.00 7.40 2.00 83 27.10 143 134	0.74 1.21 - 0.13 5.39 1.28	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34
ime General inoleum General fiscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General	5.30 25.00 7.40 2.00 83 27.10 143 134 36	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 -	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34
ime General General General Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 - 1.70	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34
ime General General General Aiscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General	5.30 25.00 7.40 2.00 83 27.10 143 134 36	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 -	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 34
ime General General General Cellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34
ime General General General Cellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP -	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 92
ime General General General Concentration General Conton Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 - 8.10 5.30	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 2 Reference 1 Reference 92 Reference 92
ime General inoleum General discellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 - 8.10 5.30 1.40	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 92 Reference 1 Reference 92 Reference 1 Reference 1
ime General inoleum General liscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing)	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 2 Reference 1
ime General General General Iiscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 2 Reference 1 Reference 1 Reference 1 Reference 1 Reference 1 Reference 21 Reference 21 Reference 2 Reference 1 Reference 2 Reference 1 Reference 21
ime General General General Ceneral Ceneral Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37	0.74 1.21 - 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 92 Reference 1 Reference 1 Reference 1 Reference 1 Reference 21 Reference 2 Reference 2 Reference 1 Reference 2 Reference 1 Reference 2 Reference 3 Reference 3 Reference 4 Reference
ime General General General Concentrational General Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50 4.94	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 1 Reference 1 Reference 1 Reference 1 Reference 1 Reference 1 Reference 2
ime General General General Concentrational General Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00	0.74 1.21 	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 2 Reference 1 Reference 1 Reference 1 Reference 1 Reference 21 Reference 21 Reference 2 Reference 2 Reference 2 Reference 32 Reference 34 Referenc
ime General General General Certenal Certenal General Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.03 0.03 0.01 0.0	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 2 Reference 92 Reference 1 Reference 1 Reference 1 Reference 21 Reference 21 Reference 2 Reference 2 Reference 2 Reference 92 Reference 1 Reference 92 Reference 1 Reference 21 Reference 21 Reference 21 Reference 21 Reference 21 Reference 92 Reference
ime General inoleum General Miscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural Quartz powder	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66 0.85	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50 4.94 30.30 12.40 0.52 0.03 0.02	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 92 Reference 1 Reference 92 Reference 1 Reference 21 Reference 2 Reference 2 Reference 2 Reference 2 Reference 92 Reference 1 Reference 92 Reference 2 Reference 2 Reference 2 Reference 2 Reference 2 Reference 2 Reference 92
ime General inoleum General liscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural Quartz powder Shingle	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66 0.85 11.30	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50 4.94 30.30 12.40 0.52 0.03 0.02 0.30	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 92 Reference 1 Reference 92 Reference 1 Reference 1 Reference 2 Reference 2 Reference 2 Reference 2 Reference 1 Reference 92 Reference 1 Reference 1 Reference 2 Reference 2 Reference 2 Reference 2 Reference 2 Reference 92 R
ime General inoleum General Aiscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural Quartz powder Shingle Silicon	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66 0.85 11.30 2355	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50 4.94 30.30 12.40 0.52 0.03 0.02 0.30	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 2 Reference 2 Reference 92 Reference 1 Reference 1 Reference 2 Reference 1 Reference 1 Reference 1 Reference 1 Reference 2 Reference 34 Reference 35 Reference 92 Reference 92 Reference 1 Reference 21 Reference 21 Reference 21 Reference 21 Reference 21 Reference 92
ime General inoleum General Miscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural Quartz powder Shingle Silicon Slag (GGBS)	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66 0.85 11.30	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50 4.94 30.30 12.40 0.52 0.03 0.02 0.30	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 92 Reference 1 Reference 1 Reference 1 Reference 21 Reference 21 Reference 2 Reference 2 Reference 1 Reference 92 Reference 1 Reference 2 Reference 3 Reference 2 Reference 2 Reference 2 Reference 2 Reference 2 Reference 2 Reference 3 Reference 4 Reference 3 Reference 4 Refere
ime General inoleum General Aiscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural Quartz powder Shingle Silicon	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66 0.85 11.30 2355 1.33	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.02 0.03 0.02 0.03 0.07 0.07	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 2 Reference 2 Reference 92 Reference 1 Reference 1 Reference 2 Reference 1 Reference 1 Reference 1 Reference 1 Reference 2 Reference 34 Reference 35 Reference 92 Reference 92 Reference 1 Reference 21 Reference 21 Reference 21 Reference 21 Reference 21 Reference 92
ime General inoleum General Miscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural Quartz powder Shingle Silicon Slag (GGBS) Silver Straw Terrazzo Tiles	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66 0.85 11.30 2355 1.33 128.20 0.24 1.40	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50 4.94 30.30 12.40 0.52 0.03 0.02 0.01 0.52 0.03 0.02 0.01 0.01 0.52 0.03 0.02 0.01 0.01 0.12 0.01	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 1 Reference 1 Reference 1 Reference 21 Reference 21 Reference 21 Reference 21 Reference 2 Reference 21 Reference 32 Reference 33 Ground Granulated Blast Furnace Slag (GGBS) Reference 37,166 & 234 Reference 1
ime General inoleum General Aiscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural Quartz powder Shingle Silicon Slag (GGBS) Silver Straw Terrazzo Tiles Vanadium	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66 0.85 11.30 2355 1.33 128.20 0.24 1.40 3710.00	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50 4.94 30.30 12.40 0.52 0.03 0.02 0.30 - - 0.07 6.31 0.01 0.12 228.00	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 1 Reference 1 Reference 1 Reference 21 Reference 22 Reference 32 Reference 33 Ground Granulated Blast Furnace Slag (GGBS) Reference 1 Reference 31 Reference 32 Reference 33 Reference 32 Reference 33 Reference 32 Reference 32 Reference 33
ime General inoleum General Aiscellaneous Asbestos Calcium Silicate Sheet Chromium Cotton, Padding Cotton, Fabric Damp Proof Course/Membrane Felt General Flax Fly Ash Grit Carpet Grout Glass Reinforced Plastic - GRP - Fibreglass Lithium Mandolite Mineral Fibre Tile (Roofing) Manganese Mercury Molybedenum Nickel Perlite - Expanded Perlite - Natural Quartz powder Shingle Silicon Slag (GGBS) Silver Straw Terrazzo Tiles	5.30 25.00 7.40 2.00 83 27.10 143 134 36 33.50 0.10 0.12 30.80 100 853 63 37 52 87 378 164 10.00 0.66 0.85 11.30 2355 1.33 128.20 0.24 1.40	0.74 1.21 1.21 0.13 5.39 1.28 6.78 4.20 - 1.70 0.01 0.01 0.01 0.01 0.01 - 8.10 5.30 1.40 2.70 3.50 4.94 30.30 12.40 0.52 0.03 0.02 0.01 0.52 0.03 0.02 0.01 0.01 0.52 0.03 0.02 0.01 0.01 0.12 0.01	zinc by other processes) Embodied carbon was difficult to estimate Data difficult to select, large data range. Reference 4 Reference 49 Reference 21 Reference 34 Reference 34 Reference 34 Reference 2 Reference 1 Reference 1 Reference 1 Reference 21 Reference 21 Reference 21 Reference 21 Reference 2 Reference 2 Reference 21 Reference 22 Reference 32 Reference 33 Ground Granulated Blast Furnace Slag (GGBS) Reference 34 Reference 3

Materials	Embodied Ener	gy & Carbon Data	Comments
	EE - MJ/kg	EC - kgCO2/Kg	EE = Embodied Energy, EC = Embodied Carbon
Water	0.20		Reference 139
Wax	52.00		Reference 139
Wood stain/Varnish	50.00	5.35	Reference 1
General Wool	3.00	0.15	Reference 155
Yttrium	1470	84.00	Reference 21
Zirconium	1610	97.20	Reference 21
Paint	1010	51.20	
ant		1	I
General	68.00	3.56	Large variations in data, especially for carbon emissions.
EXAMPLE: Single Coat	10.2 MJ/Sqm	0.53 kgCO2/Sqm	Assuming 6.66 Sqm Coverage per kg
EXAMPLE: Double Coat	20.4 MJ/Sqm	1.06 kgCO2/Sqm	Assuming 3.33 Sqm Coverage per kg
EXAMPLE: Triple Coat	30.6 MJ/Sqm	1.60 kgCO2/Sqm	Assuming 2.22 Sqm Coverage per kg
Paper			
Paperboard (General for construction	24.90	1.33	Fuchation (C) (of used overlades carbon converting
use)	24.80	1.32	Excluding CV of wood, excludes carbon sequestration
Fine Paper	28.20	1.50	Excluding CV of wood, excludes carbon sequestration
Wallpaper	36.40	1.93	
laster			
			Problems selecting good value, inconsistent figures, Wes
General (Gypsum)	1.80	0.12	et al believe this is because of past aggregation of EE wit
			cement
Plasterboard	6.75	0.38	
lastics			
			35.6 MJ/kg Feedstock Energy (Included). Determined by
General	80.50	2.53	the average use of each type of plastic used in the
			European construction industry
ABS	95.30	3.10	48.6 MJ/kg Feedstock Energy (Included)
General Polyethylene	83.10	1.94	54.4 MJ/kg Feedstock Energy (Included). Based on
			average use of types of PE in European construction
High Density Polyethylene (HDPE)	76.70	1.60	54.3 MJ/kg Feedstock Energy (Included)
HDPE Pipe	84.40	2.00	55.1 MJ/kg Feedstock Energy (Included)
Low Density Polyethylene (LDPE)	78.10	1.70	51.6 MJ/kg Feedstock Energy (Included)
LDPE Film	89.30	1.90	55.2 MJ/kg Feedstock Energy (Included)
Nylon 6	120.50	5.50	38.6 MJ/kg Feedstock Energy (Included)
Nylon 6,6	138.60	6.50	50.7 MJ/kg Feedstock Energy (Included)
Polycarbonate	112.90	6.00	36.7 MJ/kg Feedstock Energy (Included)
Polypropylene, Orientated Film	99.20	2.70	55.7 MJ/kg Feedstock Energy (Included)
Polypropylene, Injection Moulding	115.10	3.90	54 MJ/kg Feedstock Energy (Included)
Expanded Polystyrene	88.60	2.50	46.2 MJ/kg Feedstock Energy (Included)
General Purpose Polystyrene	86.40	2.70	46.3 MJ/kg Feedstock Energy (Included)
High Impact Polystyrene	87.40	2.80	46.4 MJ/kg Feedstock Energy (Included)
Thermoformed Expanded Polystyrene	109.20	3.40	49.7 MJ/kg Feedstock Energy (Included)
Polyurethane	72.10	3.00	34.67 MJ/kg Feedstock Energy (Included). Poor data availability of feedstock energy
-			28.1 MJ/kg Feedstock Energy (Included). Assumed mark
PVC General	77.20	2.41	average use of types of PVC in the European constructio
PVC Pipe	67.50	2.50	industry 24.4 MJ/kg Feedstock Energy (Included)
Calendered Sheet PVC	68.60	2.60	24.4 MJ/kg Feedstock Energy (Included)
PVC Injection Moulding	95.10	2.20	35.1 MJ/kg Feedstock Energy (Included)
UPVC Film	69.40	2.50	25.3 MJ/kg Feedstock Energy (Included)
Rubber	00140	2100	20.5 Morky recusiock Energy (mended)
General	101.70	3.18	41.1 MJ/kg Feedstock Energy (Included). Assumes that natural rubber accounts for 35% of market. Difficult to
Synthetic rubber	120.00	4.02	estimate carbon emissions. 42 MJ/kg Feedstock Energy (Included). Difficult to
		1 62	estimate carbon emissions. 39.43 MJ/kg Feedstock Energy (Included). Feedstock fro
Natural latex rubber	67.60	1.63	the production of carbon black. Difficult to estimate carbo emissions.
and Comment	0.40	0.005	
General	0.10	0.005	
sealants and adhesives			
Epoxide Resin	139.30	5.91	42.6 MJ/kg Feedstock Energy (Included)
Mastic Sealant	62.3 to 200		
Melamine Resin	113.00		Reference 77
Phenol Formaldehyde	87 to 89.3		·······
Urea Formaldehyde	40 to 78.2	1.3 to 2.26	
Soil			
	0.45	0.023	

Materials	Embodied Ener	gy & Carbon Data	Comments		
	EE - MJ/kg	EC - kgCO2/Kg	EE = Embodied Energy, EC = Embodied Carbon		
Steel					
	.	I	Estimated from UK mix of materials. Worldwide recycled		
General (average of all steels)	24.40	1.77	content of 42.7%		
Virgin	35.30	2.75			
Recycled	9.50	0.43	Could not collect strong statistics on mix of recycled steels		
Bar & rod	24.60	1.71	Recycled content 42.7%		
Virgin	36.40	2.68			
Recycled	8.80	0.42			
Engineering steel - Recycled	13.10	0.68			
Pipe - Virgin	34.44	2.70			
Recycled		Production Route			
Plate - Virgin	48.40	3.19			
Recycled		Production Route	Described equitant 40.70/		
Section	25.40 36.80	1.78 2.78	Recycled content 42.7%		
Virgin Recycled	10.00	0.44			
Sheet - Virgin	31.50	2.51			
Recycled		Production Route			
Sheet - Galvanised - Virgin	39.00	2.82			
Wire - Virgin	36.00	2.83			
Stainless	56.70	6.15	4.3 MJ/kg Feedstock Energy (Included). This data has been difficult to select, there is highly conflicting data, finally selected world average data from institute of Stainless Steel Forum (ISSF) due to the large extent of the study. Values specified are for the most popular grade (304).		
<u>Stone</u>	Data on s	stone was difficult to select, with	h high standard deviations and data ranges.		
General	1.00	0.056			
Stone Gravel/Chippings	0.30	0.017			
Granite	0.1 to 13.9 !	0.006 to 0.781	Reference 22		
Limestone	0.30	0.017			
Marble Marble tile	<u> </u>	0.112 0.187			
Shale	0.03	0.107	Reference 36		
Slate	0.03 0.1 to 1.0	0.002 0.006 to 0.056	Large data range		
Timber			wood. Timber values were particularly difficult to select!		
General	8.50	0.46	Estimated from UK consumption of timber		
Glue Laminated timber	12.00	0.65 (?)			
Hardboard	16.00	0.86			
Laminated Veneer Lumber	9.50	0.51 (?)	Ref 126		
MDF	11.00	0.59	Only 4 data sources		
Particle Board	9.50	0.51	Very large data range, difficult to select best value		
Plywood	15.00	0.81			
Sawn Hardwood	7.80	0.47			
Sawn Softwood	7.40	0.45			
Veneer Particleboard (Furniture)	23.00	1.24			
Tin Tin Constad Plate (Steel)	19.2 to 54.7	1.02 to 2.02	1		
Tin Coated Plate (Steel) Tin	250.00	1.03 to 2.93 13.70	lack of modern data, large range of data		
Titanium	230.00	13.70	lack of modern data, large range of data		
Virgin	361 to 745	· ·	lack of modern data, large range of data, small sample size		
Recycled	258.00	-	lack of modern data, large range of data, small sample size		
Vinyl Flooring					
General	65.64	2.29	23.58 MJ/kg Feedstock Energy (Included), Same value as PVC calendered sheet		
Vinyl Composite Tiles (VCT)	13.70		Reference 77		
Zinc		_			
General	61.90	3.31	uncertain carbon estimates, currently estimated from typica		
Virgin	72.00	3.86	fuel mix		
Recycled	9.00	0.48			

Materials	Embodied Energ	y & Carbon Data	Comments
	EE - MJ/kg	EC - kgCO2/Kg	EE = Embodied Energy, EC = Embodied Carbon

Miscellaneous:

	Embodied Energy - MJ	Embodied Carbon - Kg CO2	
PV Modules	MJ/sqm	Kg CO2/sqm	
Monocrystalline	4750 (2590 to 8640)	242 (132 to 440)	Assumed typical industrial fuel mix to estimate CO2
Polycrystalline	4070 (1945 to 5660)	208 (99 to 289)	
ThinFilm	1305 (775 to 1805)	67 (40 to 92)	
Windows	MJ per Window		
1.2mx1.2m Single Glazed Timber Framed Unit	286 ?	14.60	Assumed typical UK industrial fuel mix to estimate CO2
1.2mx1.2m Double Glazed (Air or Argon Filled):			
Aluminium Framed	5470	279	
PVC Framed	2150 to 2470	110 to 126	
Aluminium -Clad Timber Framed	950 to 1460	48 to 75	
Timber Framed	230 to 490	12 to 25	
Krypton Filled Add:	510	26	
Xenon Filled Add:	4500	229	

Guide to the Material Profiles

The following worksheets contain profiles of the main materials within this inventory. The inventory was created through manually analysing the separate ICE-Database, which stored data on each value of embodied energy/carbon (i.e. Data source and where possible a hyperlink to the report, year of data, boundary conditions, fuel mix, specific comments...etc). The full ICE database contains far more detail than available in this inventory. These profiles have been created to present a summary of the database and to present the embodied energy & carbon values. Below you will find an example of a profile (largely blank) which has been separated into smaller segments to allow a clearer annotation of each section.

Section 1: Database statis	tics
----------------------------	------

The materials were broken down into sub-categories, which reflected how the data is stored within the database. Most materials have a general category, and are possibly broken down into more specific forms i.e. Aluminium general, Aluminium extruded...etc. Each of the sub-categories are then broken down into further classifications according to the recycled/virgin content of the material. In many cases the authors of the data sources have not specified this data, hence it was required to create an unspecified classification.

Main Material Material

> Sub-Material Category 100% Recycled 50% Recycled Other Specification Unspecified Virgin

Here are simple statistics from the main ICE-Database. They include the number of records within the database, which represents the sample size that was used to select this data. This may be used as a (simple) indicator of the quality and reliability of the selected values. Additional statistics include the average embodied energy (EE) from the literature; this should not be used in place of the selected values. The ICE database stored the data as published by the original author, hence each record had different boundary conditions or were for a very specific/rare form of the material. These facts can not be represented by statistics but only with manual examination of the ICE-Database records. However, in many cases these statistics are similar to the selected 'best' values. Finally, the standard deviation and a full data range are presented to maintain an openness to this inventory.

<u>Maximu</u>m EE

Minimum EE

Material Profile: Example

Embodied Energy (EE) Database Statistics - MJ/Kg

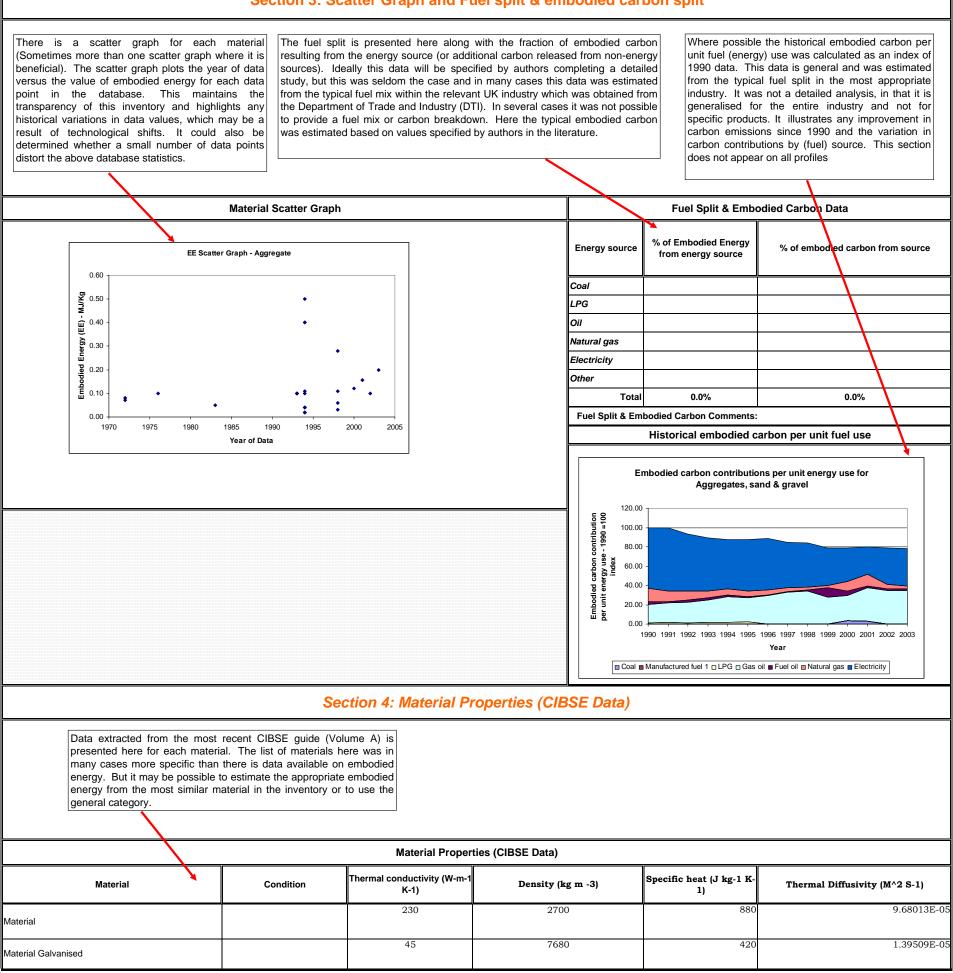
Average EE

Standard Deviation

Section 2: Selected (or 'Best') values of embodied energy & carbon

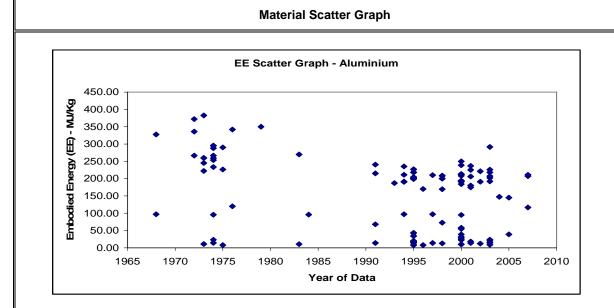
The values of embodied energy are presented here; the example below is only for materials that can be recycled, i.e. metals. The format of presentation has minor variations according to the needs of the data being presented. The 'general' material classification is the value that should be used if unsure of which value to select. The primary material is for predominantly virgin materials and secondary for predominantly recycled materials i.e. many authors allow a slight fraction of recycled material under a primary classification, but these are not always stated. Alternatively a recycled content could be assumed and these values can be used to estimate the embodied energy for any given recycled content.

No. Records


The embodied carbon has been presented separately. Again the values distinguish between primary (virgin) materials, secondary (recycled) materials and the average value typical of the UK market place. The best range is what the author of this work believes to be a more appropriate range than the full range given in the database statistics (presented in section 1, above). The selection of the range and the 'best' values of embodied energy was not an easy task, especially with so many holes in data provided by authors, but they provide a useful insight into the potential variations of embodied energy within this material. The selected coefficient of embodied energy may not fall within the centre of the range for a number of reasons. The selected value of embodied energy tries to represent the average on the marketplace. However, variations in manufacturing methods or factory efficiency are inevitable.

Comments on the Database Statistics:

							-			
	Selected Embodied Energy & Carbon Values and Associated Data									
	Embo	odied Energy	- MJ/Kg	Embod	ied Carbon - K	(g CO2/Kg		Best EE Range - MJ/Kg		
Material	UK Typical	Primary	Secondary	UK Typical	Primary	Secondary	Boundaries	Low EE	HighEE	Specific Comments
General Material										
Cast Products							Cradle to Gate		(+/-30%)	
Extruded							Cladie to Gate		(+/-30 %)	
Rolled										
Comments										



Section 3: Scatter Graph and Fuel split & embodied carbon split

		Γ	Material Profile: A	Aggregate		
		Embodie	d Energy (EE) Databa	se Statistics - MJ/	Kg	
ain Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
ggregate	36	0.11	0.12	0.01	0.50	
Aggregate, General Predominantly Recycled	36 1 3	0.11	0.12	0.01	0.50	None
Unspecified						
Virgin	16	§ 0.10	0.15	5 0.01	0.50	
		Selected Embod	ied Energy & Carbon	Values and Assoc	iated Data	
				Best EE Ra	nge - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General Aggregate	0.1	0.005	Cradle to Gate	0.05	0.25	None
Comments	the boundary condi		adle to gate etc), th			dered when selecting a best value, e t they are not represented in the sca
	Material S	Scatter Graph			Fuel Split & Er	nbodied Carbon Data
	EE Scatter Gr	raph - Aggregate		Energy source	% of Embodied Energy from energy source	% of embodied carbon from source
				Coal	0.0%	0.0%
ອ ^{0.60}				LPG	0.0%	0.0%
0.50 -		•				
· ·				Oil	19.8%	22.7%
(1) 0.40 -		•		Natural gas	14.9%	12.6%
0.30 - B 0.20 - B 0.10 - B		•		Electricity	65.3%	64.7%
		·		Other	0.0%	0.0%
0.20 -		•	•	Total	100.0%	100.0%
6 0.10 -	•	• • • • •	•		died Carbon Commen	4
0.00 +		1990 1995 2000 Year of Data	2005 2010	value is in agreement	with other results in the	g the UK typical fuel split in this industry, the resu e literature. d carbon per unit fuel use
				Eml		utions per unit energy use for s, sand & gravel
				120.00		
				120.00 - 90		
				120.00 - 0		
				120.00 100.00		
				120.00 - 00.00 - 00.08 - 00.08 - 00.09 - 1000 - 100		
				120.00 100.00		
				Embodied carbon - 00.00 Embodied carbon - 00.08 - 100 - 00.00 findex - 00.00 - 100 - 00.07 - 100		
				Embodied carbon contribution 00.00 Embodied carbon contribution 00.00 findex 00.00 = 100 00.00 = 000 00.00 = 000 0.00 =		995 1996 1997 1998 1999 2000 2001 2002 2003
				Embodied carbon contribution 00.00 Embodied carbon contribution 00.00 findex 00.00 = 100 00.00 = 000 00.00 = 000 0.00 =		995 1996 1997 1998 1999 2000 2001 2002 2003 Year
				Embodied carbon contribution 0.000 Embodied carbon contribution 0.000 ber unit energy use - 1990 = 100 0.00 - 00.00 - 100 0.00 - 100 1990		Year
				Embodied carbon contribution 0.000 Embodied carbon contribution 0.000 ber unit energy use - 1990 = 100 0.00 - 00.00 - 100 0.00 - 100 1990		
			Material Properties (C	U001 100.00 - 100.00 - 000 = 00.00 - 000 = 00.00 - 0.00 - 0.00 - 1990 = 00.00 - 1990 =		Year
Mate	rial	Condition	Material Properties (C Thermal conductivity (W-m-1 K-1)	U001 100.00 - 100.00 - 000 = 00.00 - 000 = 00.00 - 0.00 - 0.00 - 1990 = 00.00 - 1990 =		Year
Mate ggregate			Thermal conductivity	CIBSE Data)	lanufactured fuel 1 LPG Specific heat (J	Year Gas oil Fuel oil Natural gas Electricity

						Ma	aterial Profile	e: Aluminiu	m	
							Energy (EE) Da			
Main Material		No. Record	ds						Maximum EE	Comments on the Database S
Aluminium		111		157.1			104.7	8.0	382.7	
Aluminium, General		111		157.1			104.7	8.0	382.7	
50% Recycled			4	108.6			53.4	58.0		
Other Specification			3			146.5	79.3	55.0	193.5	There was a large sample size, w
Predominantly Recycled			28			17.9	÷	8.0		
Unspecified			14			169.1		68.0		
Virgin			62			224.1	68.5	39.2	382.7	
					Selec	ted Embodie	d Energy & Carl	bon Values and	Associated Data	
	Emb	odied Energy	/ - MJ/Kg	Embodi	ed Carbon -	Kg CO2/Kg		Best	EE Range - MJ/Kg	
Material	Typical	Primary	Secondary	UK Typical	Primary	Secondary	Boundaries	Low EE	High EE	Spec
General Aluminium	155.00	218	28.8	8.24	11.5	1.69	,,			General aluminium assumes Uk
Cast Products	159.00	225.5	24.5	8.28	11.7	1.35				
Extruded	154.00	213.5	34.1	8.16	11.2	1.98	Cradle to Gate		(+/-20%)	18.7% castings. Worldwide recy please see the
Rolled	155.00	217	27.8	8.26	11.5	1.67				
Comments	agreement towards th (worldwide	t with the fin te top of the average) v	al selected va e full data ran was assumed	lues. The vange in the d for the typi	alue for gen atabase. Th cal market	eral aluminiun his is because values statisti	n was calculated the value depe c from the IAI, I	assuming the U ends upon the le nternational Alu	IK split between the different evel of material processing (m the IAI. The averages from forms of aluminium. The sele i.e., ingot or (semi-) fabricate uminium production does hat ont of the document.

	Fuel Sp	lit & Embodied Carbon Data
Energy source	% of Embodied Energy from energy source	% of embodie
Electricity	63.6%	
Other	36.4%	
Total	100.0%	
	oodied Carbon Comments:	
The fraction of ene	rgy and carbon from electricity was	s extracted from an IAI (Internation

Material Properties (CIBSE Data)							
Material	Condition	Thermal conductivity (W-m 1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal I		
aluminium		230	2700	880			
aluminium cladding		45	7680	420			

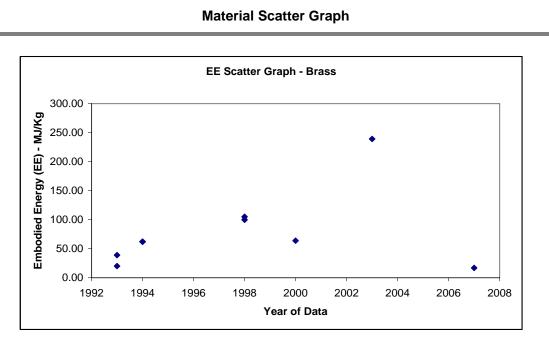
e Statistics: , with many high quality data sources. pecific Comments UK ratio of 25.6% extrusions, 55.7% Rolled & ecycled content of 33%. For feedstock energy he main ICE summary tables. ----from the database statistics are in good elected value for secondary aluminium is ated product). A 33% recycled content have feedstock energy; this is because ta ied carbon from source 57.2% 42.8% 100.0% nal Aluminium Institute) report.

l Diffusivity (M^2 S-1)

9.68013E-05

1.39509E-05

				Material Profi	le: Asphalt		
	10	J		Embodied Energy (EE) Data	abase Statistics - MJ/Kg	1	
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:	
Asphalt Asphalt, General	17 17	6.63 6.63	11.89 11.89	0.20	50.20 50.20		me values included the feedstock ene
Predominantly Recycled		2 7.32	0.28	7.12			hat it was not always possible to detern ditional indication of the difficulty in se
Unspecified			13.47	0.23	50.20	that the standard deviation was mu	
Virgir	ן 2	0.49		0.20			0
	70	1	Select	ed Embodied Energy & Carb			Di
	Embodied Energy	Foodstook Energy	Embodied Carbon Ka		Best EE F	Range - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Feedstock Energy (Included) - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comm
General Asphalt	2.6	1.91	0.045	Cradle to Gate	0.23	4	See main comm
Roads & Pavements	2.41	0.82	0.14	40 year life time	Not enoug	h data sources	Very limited data, see re
Road Example	2,672 MJ/Sqm	906 MJ/Sqm	134 KgCo2/Sqm	40 year life time	Not enough data sources		limited data
Comments	especially due t value is towards include them). T asphalt and bitu	o the large differ s the lower end c There is a further ument and interna	ence in embodied ener of the range. This is r problem from authors ational differences bet	ergy of these two distinct m most likely because most of assuming that asphalt and ween the use of these nan	naterials. Overall this day of the resources did not bitumen have the same nes cause additional con	ata was difficult to select. T specify if the data included embodied energy (which is	men' itself. This is obviosuly a he scatter graph below displa I feedstock energy (in fact mo s very inaccurate). Inappropria he data was stored in its quo lysing the data.
		Material Scatte	r Graph			Fuel Split & Embo	died Carbon Data
60.00 50.00 - 40.00 - 50.00 - 20.00 - 10.00 - 0.00	•	E Scatter Graph	- Asphalt	•	NO fuel split and embo	odied carbon breakdown da main รด	ta available. The values usec purces


			Material Properties (CIBSE Data)									
Ī	Material	Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)	Comm					
ŀ	Asphalt A		0.5	1700	1000	2.94118E-07	The CIBSE guide provides two source					
	Asphalt B		1.2	2300	1700	3.06905E-07						
	poured		1.2	2100	920	6.21118E-07						
	reflective coat		1.2	2300	1700	3.06905E-07						
	roofing, mastic		1.15	2330	840	5.87574E-07						

tics: ck energy, but some excluded it. determine if the feedstock energy y in selecting the best value was
Comments
comments
see reference 123
ed data
uly a cause of confusion, displays that the selected ct most of them probably opriate use of the names quoted form, as a result
used were quoted in the
ments vo sets of values from different urces

			Ma	terial Profile:	Bitumen		
			Embodied En	ergy (EE) Databa	se Statistics - MJ/Kg		
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments	on the Data
Bitumen	7	17.91	20.21	2.40	50.00		
Bitumen, General	7	17.91	20.21	2.40	50.00	Very poor data ava	ailability and
Unspecified Virgin		20.50 2.40		<u>3.38</u> 2.40		<u>0</u>	,
Virgin	11	-	1		Values and Associated	 Data	
					li internet interne		
Material	Embodied Energy -	Feedstock Energy	Embodied Carbon - Kg	Boundaries	Best EE	Range - MJ/Kg	
	MJ/Kg	(Included) - MJ/Kg	CO2/Kg		Low EE	High EE	
General Bitumen	47	37.7 (?)	0.48	Cradle to Gate	(+	-/- 30%)	U
Comments	the largest know re used as the term for additional confusion the large data ran	eserves are in Canada. Bit or 'bitumen'. For selection o on as a result of the Englis	umen must not be con of best values we expe h speaking languages ed to feedstocks. Bitu	fused with asphalt rienced similar pro (British, American umen is produced	, which is a mineral aggr blems to asphalt (Bitume , Australian and Canadia from oil, as such it has	the prime feed stock for petro egate with a bituminous binde n is used to make asphalt), bu n) using the term 'Bitumen' in a high feedstock energy val	er, howeve ut with a s different v
		Material Scatter Graph				Fuel Split & Embodied	Carbon Da
60.00 50.00 40.00 30.00 20.00 10.00 0.00 1975	• 1980	EE Scatter Graph - Bitume 1985 1990 Year of Data	en • 1995 2000	• 2005	NO fue	l split and embodied carbon b	reakdown
			Mate	erial Properties (C	IBSE Data)		
Mate	rial	Condition	Thermal conductiv	ity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	The
Bitumen, composite, floo	oring		0.85	5	2400	1000	
Bitumen, insulation, all t			0.2		1000	1700	
	7755		0.2		1000	1700	

Database Statistics:
and very large data range.
Specific Comments
Unknown embodied carbon
hetic (refined). Refined bitumen is production from tar sands, of which ever in the US the term 'asphalt' is a smaller sample size. There was nt ways. The author believes that he inconsistencies among authors
Data
wn data available.
hermal Diffusivity (M^2 S-1)
3.54167E-07
1.17647E-07

			Materia	al Profile: Brass		
			Embodied Energy (EE) Database Statistics - I	MJ/Kg	
lain Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
rass	9	80.70	71.87	16.81	239.00	
Brass, General	9	80.70	71.87	16.81	239.00	
Other Specification		39.00	39.00	39.00	-	Poor data quantity
Predominantly Recycled		20.00	20.00	20.00	-	
Unspecified Virgin		113.95 16.81	72.67 16.81	62.00 16.81	239.00	
Virgin	2			v & Carbon Values and As	sociated Data	
					ange - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General Brass 44 2.42 (?)		Wide Range				
Primary Brass	80	4.39 (?)	Cradle to Gate	60	100	60% recycled material assumed
Secondary Brass	20	1.1 (?)		10 ?	30 ?	
Comments	brass industry. Th				emissions difficult. This was only be a set of the set	
	EE Scotto	r Granh - Brass		Energy source	% of Embodied Energy from energy source	% of embodied carbon from source
EE Scatter Graph - Brass				Coal	4.0%	5.9%
				LPG	0.0%	0.0%
250.00 -		•		Oil	10.8%	12.4%
() 200.00 -				Natural gas	19.0%	16.1%
(1) 200.00 - (1) 150.00 - (1) 150.00 -				Electricity	66.2%	65.6%
				Other	0.0%	0.0%

	Fuel Split & Embodied Carbon Data					
Energy source	% of Embodied Energy from energy source	% of e				
Coal	4.0%					
LPG	0.0%					
Oil	10.8%					
Natural gas	19.0%					
Electricity	66.2%					
Other	0.0%					
Total	100.0%					

The embodied carbon was estimated by using the UK typical fuel split in the closest available industry (Copper).

Material Properties (CIBSE Data)							
Material	Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thern		
brass		110	8500	390			

0.0%

100.0%

ermal Diffusivity (M^2 S-1)

3.31825E-05

NOTE: Bronze only had two data sources, hence a material profile could not be produced

	Embodied Energy (EE) Database Statistics - MJ/Kg										
Main Material	No. Records	Average	Standard Deviation	Minimum	Maximum						
Bronze	2	69.34	10.37	62.00	76.67						
Bronze, general	2	69.34	10.37	62.00	76.67						
Unspecified	1	76.67	76.67	76.67	-	-					
Virgin	1	62.00	62.00	62.00	-						
Material Properties (CIBSE Data)											
Material Condition			Thermal conductivity(W- m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)					
Bronze 64 8150											

			Material Profile	e: Carpets			
		Emboo	lied Energy (EE) Datab		J/Kg		
Aain Material Carpet	No. Records 20	Average EE 99.41	Standard Deviation 83.90	Minimum EE 3.00	Maximum EE 390.00	Comments on the Database Statistics:	
Carpet	20	99.41	83.9	3	390	None	
Unspecified	20		83.9 odied Energy & Carbo			<u> </u>	
				ii	EE Range - MJ/Kg		
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comments	
General Carpet	74.4 (186.7 per sqm)	3.89 (9.76 per sqm)		44.4	104.4		
Felt (Hair and Jute) Underlay	18.6	0.96			(+/- 30%)	Reference 77	
Nylon	67.9 to 149	3.55 to 7.31		-	-	Very difficult to select value, few sources, large or range, value includes feedstocks	
Polyethylterepthalate (PET)	106.5	5.55				includes feedstocks	
Polypropylene	95.4 (120 MJ/sqm)	5.03	Cradle to Grave		(+/- 30%)	includes feedstocks	
Polyurethane	72.1	3.76				includes feedstocks	
Rubber	67.5 to 140	3.91 to 8.11		-	-		
aturated Felt Underlay (impregnated with Asphalt or tar)	31.7	1.7			(+/- 30%)	Reference 77	
Wool	106 (84 MJ/sqm)	5.48				References 57,166 & 234	
	Material Scatter	Graph		Energy source	Fuel Split & Emboo	lied Carbon Data % of embodied carbon from energy source	
	EE Scatter Graph	- Carpet		Energy source	energy source		
450				LPG	0.0%	0.0%	
5 1 1 1 1 1 1 1 1 1 1			•	Oil	8.0%	9.7%	
1 000				Natural gas	36.3%	32.3%	
H 300 - 250 - 6				Electricity	55.7%	58.0%	
≥ 250 - 10 200 - 10 150 -		•		Other	0.0%	0.0%	
b 150 - b 100 - b 50 - b • • •		• •		Total	100.0%	100.0%	
Ē 50 - ◆ ◆		* •		Fuel Split & Emboo	lied Carbon Comments:		
0 +	1993 1994 1995 Year of D	1996 1997 1998 ata	1999 2000	The emb	oodied carbon was estimated by usi	ng the UK typical fuel split in this industry.	
			J	Historical embodied carbon per unit fuel use			
					oodied carbon contributions	per unit energy use for Carpet	
				120.00 100.00 100.00 100.00 100.00 100.00 100.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 100.00 110.00 100.00 110.00 100.00	990 1991 1992 1993 1994 1995 -	1996 1997 1998 1999 2000 2001 2002 2003 Year	
			Material Properties		Manufactured fuel 1 DLPG Gas	oil Fuel oil Natural gas Electricity	
			Thermal conductivity (W				
Material			m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)	
ith cellular rubber underlay			0.1	400	1360	1.83824E	
ynthetic			0.06	160	2500		

synthetic	0.06	160	2500	0.0000015
polyurethane board, cellular	0.023	24	1590	6.02725E-07
polyisocyanurate board	0.02	32	920	6.79348E-07
foil-faced, glass-fibre reinforced	0.019	32	920	6.4538E-07
polystyrene, expanded (EPS)	0.035	23	1470	1.0352E-06
polystyrene, extruded (EPS)	0.027	35	1470	5.24781E-07
polyvinylchloride (PVC), expanded	0.04	100	750	5.33333E-07
vermiculite, expanded, panels	0.082	350	840	2.78912E-07
vermiculite, expanded, pure	0.058	350	840	1.97279E-07
silicon	0.18	700	1000	2.57143E-07

				Material Profile	e: Cement	
			Embodied	Energy (EE) Datal	base Statistics - MJ/Kg	
lain Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
ement	112	5.08	2.54	0.10	11.73	
Cement Mortar Unspecified	11 9	1.54 1.30	0.91	0.10	3.49	5
Virgin Cement, Fibre Cement	2	2.63 4.60	1.22 4.60	2 <u>1.77</u> 4.60	- 3.4	3
Virgin	. 1	4.60	4.60	4.60		
Cement, Fibre Cement Unspecified	6	9.57 9.71	1.22	7.60	10.90	There was an excellent sample size of data for cement.
Virgin	2	9.28	0.17	9.16	9.40	
Cement, General Market Average	92	5.32 5.02	2.05	1.42 6 4.29	11.73 6.20	
Unspecified	65	5.46	2.27	7 1.42	11.73	3
Virgin Cement, Soil-Cement	20	4.82 0.85	0.21	7 <u>3.00</u> 0.70	6.50	2
Unspecified	2	0.85	0.21		1.00	
		I	Selected Embodie		n Values and Associated Da	ta
Motorial	Embodied Energy -	Embodied Carbon - Kg	Boundarias	Best	EE Range - MJ/Kg	Specific Commente
Material	MJ/Kg	CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General	4.6	0.83		2.8	6.8	The high range is due to the fact that the embodied energy is highly dependent upon the clinker content of cement (i.e. if additions have been added, i.e. fly ash, slagetc) and the method of manufacture.
General - 25% Fly Ash	3.52	0.62				Fly ash does have a lower embodied carbon than blast furnace slag, however th
General - 50% Fly Ash	2.43	0.42			(+/- 30%)	upper threshold of fly ash content is lower than for blast furnace slag.
General - 25% Blast Furnace Slag	3.81	0.64			(+- 30 %)	Blast furnace slag does have a higher embodied carbon than fly ash, howeve
General - 50% Blast Furnace Slag	3.01	0.45				upper threshold of blast furnace slag content is higher than for fly ash.
Fibre Cement	10.9	2.11	Cradle to Gate	Estim	ated range +/- 40%	This value was selected form the top end of the range of data. This was justific because two of the three references quoted a figure around this value Additionally, the data point at the low end of the range did not have full boundar conditions.
Mortar (1:3 cement:sand mix)	1.55	0.213				
Mortar (1:4)	1.34	0.177				
Mortar (1:6)	0.99	0.136				
Mortar (1:½:4½ Cement:Lime:Sand mix)	1.48	0.196			(+/- 30%)	Estimated from the ICE Cement, Mortar & Concrete Model.
Mortar (1:1:6 Cement:Lime:Sand mix)	1.27	0.163				
Mortar (1:2:9 Cement:Lime:Sand mix)	1.16	0.143				
Soil-Cement	0.85	0.14		0.7	1	Only two data points, this value is the average of the two sources.
Comments	but the typical cer	ment (general category abo	ove) provides a goo	d value to use in the		cement types with a large variation in the embodied energy and carbo n type of cement has been used in construction. This typical value lern data.
	Material	Scatter Graph		ļ		plit & Embodied Carbon Data
[]	Energy source	% of Embodied Energy from energy source	% of embodied carbon from source
	EE Scatte	er Graph - Cement		Coal	70.9%	31.1%
12.00				LPG	0.0%	0.0%
00.00 - ₩ - 00.00 - ₩ - 00.00 -		* *		Oil	1.2%	0.4%
≥ (<u></u>] ∞ ∩∩	** *	•	• • •	Natural gas	0.0%	0.0%
● 00.8 E	**	* ** *	••	Electricity	27.9%	7.5%
AB 6.00 - U 4.00 - Pop 2.00 -	•	•	•••	Other	0.0%	61% (Non-fuel emission)
ਸ਼ ਸ਼ੁਰੂ 4.00 -	•	\$ <u>.</u> ***	•	Total	100.0%	100.0%
					died Carbon Comments:	
0.00 1965 19	70 1975 1980	1985 1990 1995 200 Year of Data	• 0 2005 2010			n manufacture of clinker, which is the main constituent of cement. Th

Material Properties (CIBSE Data)

Material	Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)					
cement		0.72	1860	840	4.60829E-07					
cement blocks, cellular		0.33	520	2040	3.11086E-07					
cement fibreboard, magnesium oxysulphide binder		0.082	350	1300	1.8022E-07					
Cement mortar		0.72	1650	920	4.74308E-07					
cement mortar	Dry	0.93	1900	840	5.82707E-07					
cement mortar	Moist	1.5	1900	840	9.3985E-07					
cement/lime plaster		0.8	1600	840	5.95238E-07					
cement panels, wood fibres A	Dry	0.08	350	1890	1.20937E-07					
cement panels, wood fibres B	Moist	0.12	350	3040	1.12782E-07					
cement panels, wood fibres C		0.12	400	1470	2.04082E-07					
cement panels, wood fibres D	Dry	0.35	1650	840	2.52525E-07					
Cement Screed		1.4	2100	650	1.02564E-06					

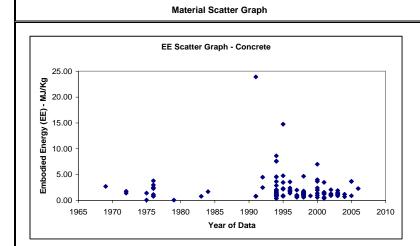
			Material Pro	file: Ceramics		
		Emb	odied Energy (EE) D	atabase Statistics	- MJ/Ka	
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
Ceramic	17	10.01	8.27	2.50	29.07	
Ceramic, General Unspecified	17 15	10.01 10.96	<u>8.27</u> 8.36	2.50 2.50	29.07 29.07	None
Virgin					3.30	
	11	Selected Em	bodied Energy & Ca	0		
Metorial	Embodied Energy -	Embodied Carbon - Kg	Downdoniae	Best EE	Range - MJ/Kg	Succific Commonte
Material	MJ/Kg	CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General Ceramics	10	0.65		2.5	29.1	There was an incredible data range, which mad selection of a single value difficult.
Fittings	20	1.05	Cradle to Gate			Reference 1
Refractory products	5.5	0.51		Estimated	Range (+/- 30%)	
Sanitary Products	29	1.48				
Tile	9	0.59		2.5	19.5	
Comments	The scatter graph products.	displays a large data rang	e, which made select	ion of a best value	difficult. The large rang	e may be attributed to different types of ceram
	Material	Scatter Graph			Fuel Split & Em	bodied Carbon Data
	EE Scatter	Graph - Ceramic		Energy source	% of Embodied Energy from energy source	% of embodied carbon from energy source
35.00				Coal	0.0%	0.0%
30.00 -		•		LPG	0.0%	0.0%
' 25 00 J		•		Oil	0.0%	0.0%
(<u>iii</u>) 20.00 - 20.00 - b ie 15.00 - iii		•		Natural gas	40.2%	28.7%
	•	•		Electricity	59.8%	49.9%
				Other	0.0%	21.4%
900 - 10.00 -	*	*		Total	100.0%	100.0%
4 5.00 -	•	• •	•	Fuel Split & Emboo	lied Carbon Comments:	
0.00 +	1994 1996	1998 2000 2002 200 Year of Data	4 2006 2008	The embodied carbo	gene	e UK typical fuel split in this industry. The fuel split is for al ceramics. I carbon per unit fuel use
				Eu 120.00 120.00 100.00 1000 = 100 1000 res 1000	Ce	butions per unit energy use for ramic tile
				0.00	990 1991 1992 1993 1994	1995 1996 1997 1998 1999 2000 2001 2002 2003 Year
			-	0.00	1 Manufactured fuel 1	Year
Materi	al	Condition	Thermal conductivity (W-m-1 K-1)	0.00 1 Coal ties (CIBSE Data) Density (kg m -3)	990 1991 1992 1993 1994 Manufactured fuel 1 LPG Specific heat (J kg-1 K- 1)	Year Gas oil E Fuel oil Natural gas Electricity Thermal Diffusivity (M^2 S-1)
Materi Ceramic tiles	al	Dry	Thermal conductivity (W-m-1 K-1)	0.00 1 Coal ties (CIBSE Data) Density (kg m -3) 2000	Specific heat (J kg-1 K- 1) 850 850 850	Year Gas oil Fuel oil Natural gas Electricity Thermal Diffusivity (M^2 S-1) 7.05882E-
	al		Thermal conductivity (W-m-1 K-1) 1.2 0.8	0.00 1 Coal ties (CIBSE Data) Density (kg m -3) 2000 1700	990 1991 1992 1993 1994 Manufactured fuel 1 LPG p Specific heat (J kg-1 K- 1) 850 850	Year Gas oil Fuel oil Natural gas Electricity Thermal Diffusivity (M^2 S-1) 7.05882E- 5.53633E-
Ceramic tiles ceramic floor tiles	al	Dry	Thermal conductivity (W-m-1 K-1)	0.00 1 Coal ties (CIBSE Data) Density (kg m -3) 2000 1700	Specific heat (J kg-1 K- 1) 850 850 850	Year Gas oil Fuel oil Natural gas Electricity Thermal Diffusivity (M^2 S-1) 7.05882E- 5.53633E-
Ceramic tiles reramic floor tiles lay tiles	al	Dry	Thermal conductivity (W-m-1 K-1) 1.2 0.8	0.00 1 Coal E ties (CIBSE Data) Density (kg m -3) 2000 1700 1900	990 1991 1992 1993 1994 Manufactured fuel 1 LPG p Specific heat (J kg-1 K- 1) 850 850	Year Cas oil Fuel oil Natural gas Electricity Thermal Diffusivity (M^2 S-1) 7.05882E- 5.53633E- 5.32581E-
Ceramic tiles eramic floor tiles lay tiles lay tiles, burnt		Dry	Thermal conductivity (W-m-1 K-1) 1.2 0.8 0.85	0.00 1 Coal Coal Coal 2000 1700 1900 2000	Specific heat (J kg-1 K- 1) 850 850 850 840	Year Case oil Fuel oil Natural gas Electricity Thermal Diffusivity (M^2 S-1) 7.05882E 5.53633E 5.32581E 7.7381E
Ceramic tiles eramic floor tiles lay tiles lay tiles, burnt lay tile, hollow, 10.2mm. 1	cell	Dry	Thermal conductivity (W-m-1 K-1) 1.2 0.8 0.85	0.00 1 Coal Coal Coal Coal 2000 1700 1900 2000 1120	Specific heat (J kg-1 K- 1) 850 850 850 840 840	Year Gas oil Fuel oil Natural gas Electricity Thermal Diffusivity (M^2 S-1) 7.05882E- 5.53633E- 5.32581E- 7.7381E- 5.52721E-
Ceramic tiles eramic floor tiles lay tiles lay tiles, burnt	cell 2 cells	Dry	Thermal conductivity (W-m-1 K-1) 1.2 0.85 1.3 0.52	0.00 1 Coal Coal Coal Coal 2000 1700 1900 2000 1120 1120	3990 1991 1992 1993 1994 Manufactured fuel 1 □ LPG p Specific heat (J kg-1 K- 1) 850 840 840	Year Case oil Fuel oil Natural gas Electricity Thermal Diffusivity (M^2 S-1) Thermal Diffusivity (M^2 S-1) 5.53633E 5.32581E 7.7381E 5.52721E 6.62202E

			Material Profile	: Clay (including I	Bricks)	
			Embodied Energy (EE) Database Statistics	s - MJ/Kg	
ain Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
lay Clay, General	79 79	4.30 4.30	4.12 4.12	0.02	32.40 32.40	-
Unspecified	58	4.53	4.57	0.07	32.40	There was a good sample size
Virgin	21			& Carbon Values and		
				4	E Range - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General simple baked clay products	3	0.22		1	5	
Tile	6.5	0.46		2.88	11.7	
Vitrified clay pipe DN 100 & DN 150	6.2	0.45				None
Vitrified clay pipe DN 200 & DN 300	7	0.49	Cradle to Gate	Estima	ted range +/- 30%	None
Vitrified clay pipe DN 500	7.9	0.53	Claule to Gate			
General Clay Bricks	3 +/-1	0.22		0.63	6	
EXAMPLE: Single Brick	8.4 per brick	0.62 per brick		-	-	Assuming 2.8 kg per brick
Facing Bricks	8.2	0.52		4.5	11.7	Very small sample size
EXAMPLE: Single Facing Brick	23 per brick	1.46 per brick		-	-	Assuming 2.8 kg per brick
Limestone Bricks	0.85	?	Cradle to Gate	0.7	1.01	
	FF A	Croph Class		Energy source	% of Embodied Energy from energy source	% of embodied carbon from energy sour
	EE Scatter	r Graph - Clay		Coal	0.0%	0.0%
35.00 S			•	LPG	0.0%	0.0%
30.00 -				Oil	1.9%	0.2%
1 25.00 -				Natural gas	72.1%	49.5%
- 25.00 - 30 20.00 - 15.00 -				Electricity	26.0%	17.3%
u 15.00 -		•		Other	0.0%	33.0%
99 10.00 - 99 5.00 - 99 5.00 -		* * *		Total	100.0%	100.0%
0.00 + + 1965 1970		985 1990 1995 2000 Year of Data	2005 2010		died carbon was estimated by using the Historical embodied carbon	n per unit fuel use
				120.00 100.00	991 1992 1993 1994 1995 1996 Yes ■ Coal ■ Manufactured fuel 1 □ LPG □ Ga	
			Material P	roperties (CIBSE Data)		
Mater	ial	Thermal conductivity (W- m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K 1)	Thermal Diffusivity (M^2 S-1)	Comments
ay tiles		0.85	1900) 840	5.32581E-07	
lav tiles burnt		1.2	2000	840	7 7381E-07	

clay tiles, burnt	1.3	2000	840	7.7381E-07	
clay tile, hollow, 10.2mm. 1 cell	0.52	1120	840	5.52721E-07	
Clay tile, hollow, 20.3mm, 2 cells	0.623	1120	840	6.62202E-07	
Clay tile, hollow, 32.5mm, 3 cells	0.693	1120	840	7.36607E-07	
clay tile, pavior	1.803	1920	840	1.11793E-06	
BRICKS					
Brick A	0.72	1920	840	4.46429E-07	The CISBE guide presented multiple values for
Brick B	1.31	2080	921	6.8383E-07	brick
aerated	0.3	1000	840	3.57143E-07	
brickwork, inner leaf	0.62	1700	800	4.55882E-07	
brickwork, outer leaf	0.84	1700	800	6.17647E-07	
burned A	0.75	1300	840	6.86813E-07	
burned B	0.85	1500	840	6.74603E-07	
burned C	1	1700	840	7.0028E-07	
mud	0.75	1730	880	4.92643E-07	
paviour	0.96	2000	840	5.71429E-07	
reinforced	1.1	1920	840	6.82044E-07	
tile	0.8	1890	880	4.81E-07	

			Materia	I Profile: Concrete				
			Embodied Energy	(EE) Database Statistics - MJ/Kg	g			
fain Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maxin	num EE	Comments on the Database Statistics:	
Concrete, General	122 112	2.91 3.01	8.68 9.07	0.07 0.07	92	2.50 2.50		
Unspecified Virgin	85 27	2.12 6.02	2.85 18.24	0.07		23.90 92.50	None	
Concrete, Pre-Cast Unspecified Virgin	10 6 4	1.89 2.01 1.72				.72 2.72 2.19		
Virgini	4			y & Carbon Values and Associa		2.19	l	
Boundaries		Cradle to Gate		Data Range	(+/-	30%)		
Material	Emb	Embodied Energy - MJ/Kg Embodied Carbon - Kg CO2/Kg					Specific Comments	
General Concrete	0.95			0	.130		Selection of a specific concrete type will give grate accuracy, please see comments	
1:1:2 Cement:Sand:Aggregate		1.39		0	.209		(High strength)	
1:1.5:3		1.11			.159		(used in floor slab, columns & load bearing structu	
1:2:4		0.95			.129		(Typical in construction of buildings under 3 storey	
1:2.5:5		0.84			.109			
1:3:6		0.77			.096		(non-structural mass concrete)	
1:4:8		0.69			.080		()	
				NCRETE (ICE CMC Model Values)				
Fan asinfanan manta alal ta								
For reinforcement add to selected coefficient for each 25kg steel reinforcement	0.26		0.018			For each 25 kg Steel per m3 concrete		
EXAMPLE: Reinforced RC30 (See Below) with 100kg Rebar	2.	12 (1.08 + 0.26 * 4)		0.241 (0.153 + 0.018 *4)				
			CONCRETE BL	OCKS (ICE CMC Model Values)				
Block - 8 MPa Compressive Strength		S		0.061				
Block - 10 MPa		0.67		0	Estimated from the concrete block mix proportions with a small allowance added for concrete block			
Block -12 MPa		0.71		0	.080	curing.		
Block -13 MPa		0.81		0	.098		1	
Autoclaved Aerated Blocks (AAC's)		3.50		0.28	to 0.375		Not ICE CMC model results	
			MISC	ELLANEOUS VALUES				
Prefabricated Concrete		2.00		0	.215			
Fibre-Reinforced		7.75		0	.450			
Concrete Road & Pavement		1.24		0	.127			
EXAMPLE Road		2,085 MJ/Sqm		187.7 K	gCO2/Sqm			
Wood-Wool Reinforced		2.08			-		Reference 12	
		ALTERN	ATIVE CONCRETE MIXE	I S (ICE Cement, Mortar & Concrete Mo	odel Results)		I <u></u>	
			BS 8500	0:2006 SPECIFICATIONS			1	
Material	Emb	odied Energy - MJ/kg			rbon - kgCO2/kg		NOTE: Cradle to Gate	
% Cement Replacement - Fly Ash	0%	25%	50%	FLY ASH 0%	25%	50%	Note 0% is a standard concrete	
GEN 0	0.64	0.57	0.50	0.071	0.058	0.046	Compressive Strength C6/8 MPa	
GEN 1	0.77	0.66	0.56	0.095	0.077	0.058	C8/10; Possible uses: mass Concrete, mass fill, mass foundations	
GEN 2	0.81	0.70	0.58	0.103	0.083	0.062	C12/15	
GEN 3	0.85	0.73	0.60	0.112	0.089	0.066	C16/20	
RC20	0.95	0.80	0.65	0.128	0.102	0.075	C20/25	
RC25	0.99	0.83	0.67	0.136	0.108	0.079	C25/30	
RC30	1.08	0.90	0.72	0.153	0.120	0.087	C30/37; Possible uses: foundations	
RC35	1.13		0.72	0.153	0.120		C35/45; Possible uses: ground floors	
1000	1.13	0.94	0.74	וסו. ט	0.120	0.091	C35/45; Possible uses: ground floors	

RC40	1.17	0.97	0.77	0.169	0.132	0.096	C40/50; Possible uses: structural purposes, in situ floors, walls, superstructure
RC50	1.41	1.15	0.88	0.212	0.165	0.117	C50
PAV1	1.04	0.87	0.70	0.145	0.114	0.083	C25/30
PAV2	1.08	0.90	0.72	0.153	0.120	0.087	C28/35


			GROUND GRAN	JLATED BLAST FURNACE SLAG			
% Cement Replacement - Blast Furnace Slag	0%	25%	50%	0%	25%	50%	Note 0% is a standard concrete
GEN 0	0.64	0.59	0.54	0.071	0.059	0.048	Compressive Strength C6/8 MPa
GEN 1	0.77	0.69	0.62	0.095	0.078	0.061	C8/10; Possible uses: mass Concrete, mass fill, mass foundations
GEN 2	0.81	0.70	0.65	0.103	0.083	0.065	C12/15
GEN 3	0.85	0.76	0.67	0.112	0.091	0.070	C16/20
RC20	0.95	0.84	0.73	0.128	0.103	0.079	C20/25
RC25	0.99	0.88	0.76	0.136	0.110	0.083	C25/30
RC30	1.08	0.95	0.82	0.153	0.122	0.092	C30/37; Possible uses: foundations
RC35	1.13	0.99	0.85	0.161	0.129	0.096	C35/45; Possible uses: ground floors
RC40	1.17	1.03	0.88	0.169	0.135	0.101	C40/50; Possible uses: structural purposes, in situ floors, walls, superstructure
RC50	1.41	1.22	1.03	0.212	0.168	0.124	C50
PAV1	1.04	0.91	0.79	0.145	0.116	0.088	C25/30
PAV2	1.08	0.95	0.82	0.153	0.122	0.092	C28/35

COMMENT ON ABOVE DATA STRUCTURE

The first column represents standard concrete created with 100% Portland cement. The other columns are based on a direct substitution of fly ash or blast furnace slag in place of cement. They have been modelled on the fraction of cement replacement material (fly ash or slag). However there are thresholds on the upper limit that each of these replacement materials can contribute. This threshold is thought to be linked to the strength class of the concrete. It is understood that fly ash, which has a lower embodied energy and carbon, has a lower threshold than for blast furnace slag. This implies that less fly ash can be used for a particular concrete mix. In certain circumstances blast furnace slag could reach 70-80% replacement, this is much higher than the upper limits of fly ash. The ICE Cement, Mortar & Concrete Model was used to estimate these values. It was assumed that there will be no changes in the quantities of water, aggregates or plasticiser/additives due to the use of cementitious replacement materials. The above data is offered as a what if guideline only. The data user must ensure that any quantity of cement substitution is suitable for the specific application.

Comments

The values of embodied carbon all exclude re-carbonation of concrete in use, which is application dependent. The majority of these concrete values were taken from the University of Bath's ICE Cement, Mortar and Concrete Model. It operates using the quantities of constituent material inputs. As a result these values are dependent upon the selected coefficients of embodied energy and carbon of cement, sand and aggregates, which are the main constituent materials for concrete. The values of embodied energy and carbon produced by this model are in good agreement with values quoted in the literature. It may appear that concrete has a confusing array of options but it is worth determining the strength class or preferably mix of concrete (particularly cement content) used in a project. If none of the descriptions or comments above help then you may wish to apply the above general value, which is for a typical concrete mix. But in doing so (and in an extreme case) you may inadvertently add up to +/-50% additional error bars to your concrete results. Please note the suggested possible uses of each strength class of concrete is a rough guide only, this does depend upon the building type and height.

Energy source	% of Embodied Energy from energy source	% of embodied carbon from energy source
Coal	47.1%	26.1%
LPG	0.0%	0.0%
Oil	15.4%	8.0%
Natural gas	3.1%	1.2%
Electricity	34.4%	12.9%
Other	0.0%	51.8% (Non-fuel emission)
Total	0.0%	100.0%
Fuel Split & Embodied Carbon Con	nments:	

Fuel Split & Embodied Carbon Data

This fuel mix was estimated based on the fuel mix of the constituent materials for concrete, including aggregates, sand and cemen The non-fuel related emissions are from the manufacture of cement and constitute a large proportion of the carbon emissions.

Material Properties (CIBSE Data) for Concrete									
Material	Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)				
Concrete blocks/tiles									
block, aerated		0.24	750	1000	0.000003				
block, heavyweight, 300mm		1.31	2240	840	6.96216E-0				
block, lightweight, 150mm		0.66	1760	840	4.46429E-0				
block, lightweight, 300mm		0.73	1800	840	4.82804E-				
	Dry	0.24	620	840	4.60829E-				
	Dry	0.25	670	840	4.44208E-				
	Dry	0.26	720	840	4.29894E-0				
	Dry	0.3	750	840	4.7619E-0				
	Dry	0.28	770	840	4.329E-0				
	Dry	0.29	820	840	4.21022E-0				
	Dry	0.3	870	840	4.10509E-0				
block, medium weight, 150mm		0.77	1900	840	4.82456E-0				
block, medium weight, 300mm		0.83	1940	840	5.09327E-0				
	Dry	0.31	920	840	4.01139E-0				
	Dry	0.32	970	840	3.92734E-0				
	Dry	0.35	1050	840	3.96825E-(
	Dry	0.4	1150	840	4.14079E-0				
block, hollow, heavyweight, 300mm		1.35	1220	840	1.31733E-0				
block, hollow, lightweight, 150mm		0.48	880	840	6.49351E-0				
block, hollow, lightweight, 300mm		0.76	780	840	1.15995E-0				
block, hollow, medium weight, 150mm		0.62	1040	840	7.09707E-				
block, hollow, medium weight, 300mm		0.86	930	840	1.10087E-				
block, partially filled, heavyweight, 300mm		1.35	1570	840	1.02366E-				
block, partially filled, lightweight, 150mm		0.55	1170	840	5.59626E-				
block, partially filled, lightweight, 300mm		0.74	1120	840	7.86565E-				
block, partially filled, medium weight, 150 mm		0.64	1330	840	5.72861E-0				
block, partially filled, mediumweight,300 mm		0.85	1260	840	8.03099E-0				
block, perlite-filled, lightweight, 150mm		0.17	910	840	2.22397E-0				
block, perlite-filled, mediumweight,150mm		0.2	1070	840	2.22519E-0				
block, with perlite, lightweight, 150mm		0.33	1180	840	3.3293E-0				
block, with perlite, medium weight, 150 mm		0.39	1340	840	3.46482E-0				
tiles		1.1	2100	840	6.23583E-0				
Concrete, cast:									
aerated		0.16	500	840	3.80952E-				
		0.29	850	840	4.06162E-				
		0.42	1200	840	4.16667E-0				
aerated, cellular		0.15	400	840	4.46429E-				
		0.13	700	840	3.91156E-				
		0.23	1000	840	8.33333E-(
		1.2	1300	840	1.0989E-(
aerated, cement/lime based		0.21	580	840	4.31034E-0				

Material Properties (CIBSE Data) for Concrete								
Material	Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)			
cellular		0.16	480	840	3.96825E-0			
- Nules has deal	At 50°C	0.19	700 520	1050	2.58503E-0 2.82805E-0			
cellular bonded dense		1.7	520 2200	2040 840	9.19913E-0			
compacted,		2.2	2400	840	1.09127E-00			
dense, reinforced		1.9	2300	840	9.83437E-0			
compacted		2.3	2500	840	1.09524E-0			
expanded clay filling		0.26	780	840	3.96825E-0			
icamod	At 50°C	0.6	1400	840 920	5.10204E-0 2.37772E-0			
foamed	At 50°C	0.07	320 400	920	2.17391E-0			
	At 50'C	0.15	700	920	2.32919E-0			
ioam slag		0.25	1040	960	2.50401E-0			
glass reinforced		0.9	1950	840	5.49451E-0			
heavyweight	Dry	1.3	2000	840	7.7381E-0			
	Moist	1.7	2000	840	1.0119E-0 3.84025E-0			
lightweight	Dry Dry	0.2	620 750	840 840	3.96825E-0			
	Dry	0.23	670	840	3.73134E-0			
	Dry	0.22	720	840	3.63757E-0			
	Dry	0.23	770	840	3.55597E-0			
	Dry	0.24	820	840	3.48432E-0			
	Dry	0.25	870	840	3.42091E-0 6.8254E-0			
	Moist Moist	0.43	750 770	840 840	6.8254E-0 5.87508E-0			
	Moist	0.38	820	840	5.8072E-0			
	Moist	0.43	820	840	5.88396E-0			
		0.08	200	840	4.7619E-07			
		0.12	300	840	4.7619E-07			
		0.17	500	840	4.04762E-07			
		0.23	700	840	3.91156E-07			
medium weight	Dry	0.32	1050 1150	840 840	3.62812E-07 3.83023E-07			
	Dry Dry	0.37	1350	840	5.20282E-07			
	Dry	0.84	1650	840	6.06061E-07			
	Dry	0.37	1050	840	4.19501E-07			
	Dry	0.27	920	840	3.49379E-07			
	Dry	0.29	980	840	3.52284E-07			
	Moist	0.59	1050	840	6.68934E-07 5.95238E-07			
		0.5	1000 1300	840 840	7.32601E-07			
		1.2	1600	840	8.92857E-0			
		1.4	1900	840	8.77193E-0			
medium weight, with lime	At 50°C	0.73	1650	880	5.02755E-0			
no fines		0.96	1800	840	6.34921E-0			
residuals of iron works		0.35	1000	840	4.16667E-0			
		0.45	1300	840	4.12088E-0 5.20833E-0			
		0.7	1600 1900	840 840	6.26566E-0			
roofing slab, aerated		0.16	500	840	3.80952E-07			
vermiculite aggregate		0.17	450	840	4.49735E-0			
very lightweight		0.14	370	840	4.5045E-0			
		0.15	420	840	4.2517E-0			
		0.16	470	840	4.05268E-07			
		0.17	520	840	3.89194E-07 3.7594E-07			
		0.18	570 350	840 840	3.7594E-0. 4.08163E-0			
		0.12	350 600	840	3.57143E-0			
		0.10						
Masonry:		0.19	470	840	4.81256E-0			
block, lightweight								
		0.2	520	840	4.57875E-0			
		0.22	570	840	4.59482E-0 4.36508E-0			
block, medium weight	Dry	0.22	600 1350	840 840	4.36508E-07 5.29101E-07			
noutin weight	Dry	0.85	1650	840	6.13276E-0			
	Dry	1.3	1800	840	8.59788E-0			
neavyweight	Dry	0.9	1850	840	5.79151E-0			
	Dry	0.73	1850	840	4.69755E-0			
	Dry	0.79	1950	840	4.82295E-0			
	Dry	0.9	2050	840	5.22648E-0 5.84416E-0			
inhtweinht	Moist Dry	0.81	1650 750	840 840	3.49206E-0			
ightweight	Dry	0.22	850	840	3.78151E-0			
	Dry	0.24	850	840	3.36134E-0			
	Dry	0.27	950	840	3.38346E-0			
nedium weight	Dry	0.32	1050	840	3.62812E-0			
	Dry	0.54	1300	840	4.94505E-0			
	Dry	0.37	1150	840	3.83023E-0			
	Dry	0.42	1250	840	0.000000			
	Dry	0.45	1350	840	3.96825E-0 4.02299E-0			
	Dry Dry	0.49	1450 1550	840 840	4.02299E-07 4.14747E-07			
		0.04	1330	040	4.14/4/E-			

		Material	Profile: Copper		
		Embodied Energy (E	E) Database Statistics - N	MJ/Kg	
No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the D
58	69.02	37.52	2.40	152.71	1
58	69.02	37.52	2.40	152.71	1
1	55.00	55.00	55.00	-	·
1	41.90	41.90	41.90	-	·
11	32.68	32.66	2.40	120.00	
20	67.54			152.00	
25	88.62	33.06	33.00	152.71	
	Select	ted Embodied Energy	& Carbon Values and Ass	sociated Data	
Embedied Energy Embedied Carbon Kr			Best EE F		
MJ/Kg	CO2/Kg	Boundaries	Low EE	High EE	Spec
40 to 55	2.19 to 3.83 (?)		-	-	Assumes recycled m environment agency).
70 (?)	3.83 (?)		45	153	Large data range be dependent upon ore gra
50 (?)	2.75 (?)	Oregula to Oregue	40	60	
17.5 (?)	0.96 (?)	Cradie to Grave	10	25	
	58 58 1 11 20 25 Embodied Energy - MJ/Kg 40 to 55 70 (?) 50 (?)	58 69.02 58 69.02 1 55.00 1 41.90 11 32.68 20 67.54 25 88.62 20 67.54 25 88.62 26 88.62 27 88.62 28 88.62 29 88.62 20 67.54 20 67.54 20 67.54 20 67.54 20 67.54 20 67.54 20 67.54 20 67.54 20 67.54 40 to 55 2.19 to 3.83 (?) 70 (?) 3.83 (?) 50 (?) 2.75 (?)	No. Records Average EE Standard Deviation 58 69.02 37.52 58 69.02 37.52 58 69.02 37.52 58 69.02 37.52 1 55.00 55.00 1 41.90 41.90 11 32.68 32.66 20 67.54 31.04 25 88.62 33.06 Select Embodied Energy MJ/Kg Embodied Carbon - Kg CO2/Kg Boundaries 40 to 55 2.19 to 3.83 (?) Cradle to Gate 70 (?) 3.83 (?) Cradle to Grave	No. Records Average EE Standard Deviation Minimum EE 58 69.02 37.52 2.40 58 69.02 37.52 2.40 58 69.02 37.52 2.40 1 55.00 55.00 55.00 1 41.90 41.90 41.90 11 32.68 32.66 2.40 20 67.54 31.04 32.95 25 88.62 33.06 33.00 Selected Embodied Energy & Carbon Values and Ass MJ/Kg Embodied Carbon - Kg CO2/Kg Boundaries Low EE 40 to 55 2.19 to 3.83 (?) - - 70 (?) 3.83 (?) - - 50 (?) 2.75 (?) 40 45	Embodied Energy (EE) Database Statistics - MJ/Kg No. Records Average EE Standard Deviation Minimum EE Maximum EE 58 69.02 37.52 2.40 152.71 58 69.02 37.52 2.40 152.71 58 69.02 37.52 2.40 152.71 58 69.02 37.52 2.40 152.71 58 69.02 37.52 2.40 152.71 1 55.00 55.00 152.00 152.00 1 32.68 33.266 2.40 120.00 20 67.54 31.04 32.95 152.00 20 67.54 33.06 33.00 152.71 Embodied Carbon - Kg Boundaries Best E ange - MJ/Kg MJ/Kg Embodied Carbon - Kg Cradle to Gate High EE 40 to 55 2.19 to 3.83 (?) - - - 70 (?) 3.83 (?) Cradle to Gate 40 60 50 (

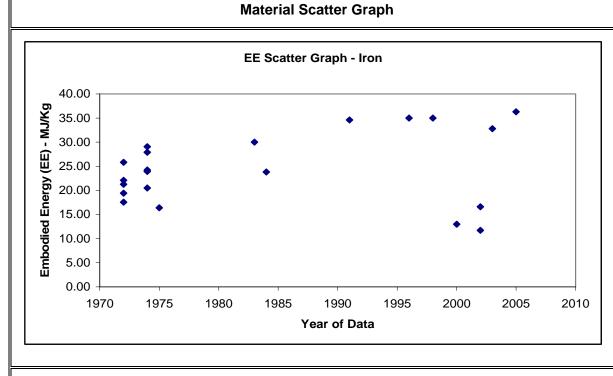
Comments

The embodied energy of copper displays a very large data range. This is possibly due to variations in the grade of copper ore and copper scrap typical embodied carbon of copper, consequentially the embodied carbon data is uncertain.

	Ν	laterial Scatter	Graph			Fuel Split & Embodied	l Carbon Data
		E Scatter Graph	Conner		Energy source	% of Embodied Energy from energy source	% of embodi
	E				Coal	4.0%	
180.00					LPG	0.0%	
160.00 - 140.00 -	•		•	,	Oil	10.8%	
120.00 -	*	•	• •		Natural gas	19.0%	
	•	·	• •	•	Electricity	66.2%	
100.00 - 80.00 - 60.00 - 40.00 - 20.00 -	•		• • • •		Other	0.0%	
60.00 - 40.00 -	*•	•	• ••• • •	•	Total	100.0%	
20.00 -	• •		• •	• •	Fuel Split & Embodied Carb	oon Comments:	
0.00	970 1975	1980 1985 Year o	1990 1995 2000 f Data	2005 2010	The embodied	carbon was estimated by using the L	JK typical fuel split in t

	Material Properties (CIBSE Data)								
	Material	Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal D			
со	pper		384	8600	390				

Database Statistics:
None
ecific Comments
materials of 46% (source: The
because the embodied energy is grade
p. There was poor data on the
odied carbon from source
5.9%
0.0%
12.4%
16.1%
65.6%
0.0%
100.0%
the copper industry.
l Diffusivity (M^2 S-1)
0.00011449
0.00011449

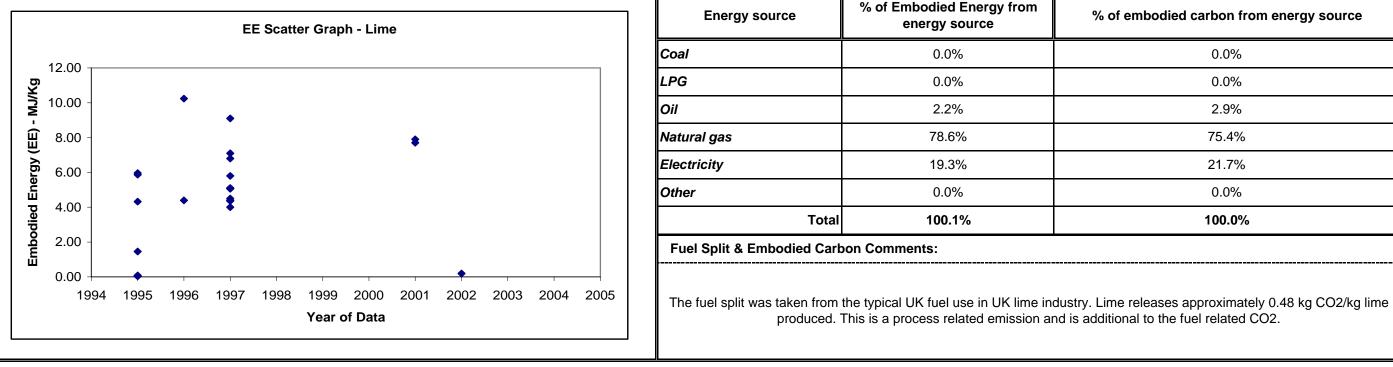

			Materi	ial Profile: Glass		
			Embodied Energy ((EE) Database Statistics - N	IJ/Kg	
ain Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
lass	95 22	20.08	9.13	2.56	62.10	
Glass, Fibreglass Market Average		25.58 30.00	8.53 30.00	11.00) 30.00	41.81	
Predominantly Recycled Unspecified			11.90 8.41		- 41.81	
Virgin	3	24.85	10.25	17.60	32.10	
Glass, General 50% Recycled	73	18.50	8.73	2.56	62.10	None
Market Average	4	16.81	5.87	12.30	25.09	
Other Specification Predominantly Recycled		0110	8.10 4.07		- 10.70	
Unspecified	34	20.82	9.96	6.80	62.10	
Virgin	29			x & Carbon Values and Ass		
	1	Jelec			ange - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General Glass	15	0.85		(+/-	- 30%)	38% recycling rate (British Glass). Recycling rate w taken from British glass report 'towards sustainal duralegenet 2021.
Fibreglass	28	1.53	Cradle to Gate	16.5	42	development 2004' Large data range, but the selected value is inside
						small band of frequently quoted values.
Toughened Glass	23.5	1.27	Cradle to Gate	-	-	Only three data sources
	Material	Scatter Graph			Fuel Split & Embodied	l Carbon Data
	EE Scatter	r Graph - Glass		Energy source	% of Embodied Energy from energy source	% of embodied carbon from energy source
				Coal	0.0%	0.0%
و 70.00				LPG	0.0%	0.0%
60.00 -		•		Oil	0.2%	0.2%
∺ ^{50.00} -				Natural gas	72.8%	60.0%
a) 40.00 -				Electricity	27.0%	26.1%
- 30.00 -	• •	• ••		Other	0.0%	13.7% (Non-energy related)
B 20.00 - •		• • • • •		Total	100.0%	100.0%
60.00 - 50.00 - 30.00 - 20.00 - 10.00 -	•			Fuel Split & Embodied Carbo	on Comments:	
0.00		1985 1990 1995 2000 Year of Data	0 2005 2010			
45.00 2 40.00	EE Scatter Gi	raph - Fibre Glass				
by 40.00 - 35.00 - (ii) 30.00 - b) 25.00 - 20.00 - b) 15.00 - b) 10.00 - c) 5.00 -	•	• •	•	has been considered in the	calculations (Fact from British	processes (Additional to energy emissions) t Glass). The fuel mix was estimated from the for general glass at 15 MJ/Kg embodied energ
5 .00 0.00 1990 199		996 1998 2000 Year of Data	2002 2004			
			Material P	roperties (CIBSE Data)		
Materia	I		Thermal conductivity (W m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)
lular sheet			0.048	3 140	840	4.08163E-
m		At 50°C	0.056	5 130	750	
			0.052	2 140	840	
id (soda-lime)		At 10°C	1.05		840	4.421778

solid (soda-lime)	At 10°C	1.05	2500	840	0.0000005
Glass fibre/wool:					
fibre quilt		0.04	12	840	3.96825E-06
fibre slab		0.035	25	1000	0.0000014
fibre, strawboard-like		0.085	300	2100	1.34921E-07
wool	At 10°C	0.04	10	840	4.7619E-06
	At 10°C	0.04	12	840	3.96825E-06
	At 10°C	0.037	16	840	2.75298E-06
	At 10°C	0.033	24	840	1.6369E-06
	At 10°C	0.032	32	840	1.19048E-06
	At 10°C	0.03	48	840	7.44048E-07
	At 10°C	0.031	80	840	4.6131E-07
wool, resin bonded	At 50°C	0.036	24	1000	0.0000015

				Material Pro	file: Insulation		
			Emt	oodied Energy (EE) [atabase Statistics	- MJ/Kg	
lain Material	No. Records		erage EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
sulation Insulation (All)	38 38		43.23 43.23	40.27 40.27			None
Unspecified	38		43.23	40.27			
	1		Selected Er	nbodied Energy & Ca			
Material	Embodied Energy - MJ/Kg	Feedstock Energy (Included) - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	EE Range - MJ/Kg High EE	Specific Comments
General Insulation	45	16.5	1.86	Cradle to Gate			Estimated from typical consumption mix of insula materials in the UK
Cellular Glass	27	-	-	Unknown			Reference 48
Cellulose	0.94 to 3.3	-	-	Cradle to Gate			
Cork	4	-	0.19	Cradle to Gate			Reference 49
Fibreglass	28	-	1.35	Cradle to Site		(+/- 40%)	
(Glasswool) Flax (Insulation)	39.5	5.97	1.7	Cradle to Grave			Reference 2
Mineral wool	16.6		1.2	Cradle to Gate			
Rockwool			1.05				Declaused is a type of minoral used (Drand)
(stonewool)	16.8	-		Cradle to Site			Rockwool is a type of mineral wool (Brand)
Paper wool	20.2	-	0.63	Cradle to Grave			Reference 2
Polystyrene				See Plas	tics for a range of polys	styrene data	
Polyurethane		[1	See Plas	ics for a range of polyu	rethane data	1
Voodwool (loose)	10.8	-	-		(+/- 40%)		Reference 168
Voodwool (Board)	20	-	0.98	Cradle to Gate			Reference 49
Recycled Wool	20.9	-	-				References 57,166 & 234
		erial Scatter G	-			Fuel Split & Embod	ied Carbon Data
160 5 140 - 5 120 -			•				
(EE) 100 - 80 - 60 - 60 - 40 - 20 - 0 -	1975 1980 1	985 1990 Year of Da		2005 2010			ated from the data available in the databas
(Ш) 100 - 60 - репродиш 20 - 0 - 1970 - Маte			ta M		BSE Data) for Insu		ated from the data available in the databas
(J) 100 - 80 - 60 - 40 - 0 1970 - Mate		Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1)	BSE Data) for Insu Density (kg m -3)	lation Specific heat (J kg-1 K-1)	
100 - 60 - 60 - 60 - 60 - 1970 - Mate		Year of Da	ta M	aterial Properties (C	BSE Data) for Insu	lation	Thermal Diffusivity (M^2 S-1) 9.52381 0.1015
(III) 100 - 60 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - Mate main: enol, rigid visocyanate		Year of Da	ta M	aterial Properties (C ctivity (W-m-1 K-1)	BSE Data) for Insu Density (kg m -3) 30	lation Specific heat (J kg-1 K-1) 1400	Thermal Diffusivity (M^2 S-1) 9.52381 2.1645 4.53515
Image: system of the system	rial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028	BSE Data) for Insu Density (kg m -3) 30 110 45 30	Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.52381 2.1645 4.53515 6.34921
Image: system of the system	rial	Year of Da	ta M	aterial Properties (C ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.52387 2.1648 4.53518 6.34927 4.53518
Image: Second state	rial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03 0.035	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 37	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.5238 2.164 4.5351 6.3492 4.5351 6.4350
Image: Second state	erial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03 0.035 0.03	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 37 10	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.5238 2.164 4.53511 6.3492* 4.53511 6.3492* 4.53511 6.3492* 4.53511 6.3492* 4.53511 6.3492* 4.53511 6.3450* 2.85714
Image: Constraint of the second state of the second sta	erial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03 0.035	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 37	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.5238 2.164 4.53511 6.3492* 4.53511 6.3492* 4.53511 6.3492* 4.53511 6.3492* 4.53511 6.3492* 4.53511 6.3450* 2.85714
Image: Constraint of the second state of the second sta	erial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03 0.035 0.03	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 37 10	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.5238 2.1643 4.53511 6.3492 4.53511 6.4350 2.85714 2.6239
Image: Second state sta	erial	Year of Da	ta M	aterial Properties (C ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03 0.035 0.03 0.035 0.04 0.054	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 37 10 10 14	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.5238' 2.164' 4.5351' 6.3492' 4.5351' 6.4350' 2.8571' 2.6239' 4.9295'
Image: system 100 - Image: system 60 - Image: system 20 - Image: system 20 - Image: system 0 - Image: system 0 - Image: system 0 - Image: system 0 - Image: system -	erial	Year of Da	ta M	aterial Properties (C ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03 0.035 0.03 0.035 0.04 0.054	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 37 10 14 12	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.5238 2.1643 4.53513 6.3492* 4.53513 6.4350* 2.85714 2.6239* 4.92958 2.11268
Interference in the second secon	erial	Year of Da Condition	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03 0.035 0.04 0.054 0.042 0.042 0.036	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 30 45 37 10 14 12 24	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.5238 2.164 4.5351 6.3492 4.5351 6.3450 2.8571 2.6239 4.92956 2.11268 9.38961
Mate Mate Mate Mate Mate am: anol enol, rigid yurethane, freon-fille yurethane, freon-fille yurethane, freon-fille a formaldehyde a formaldehyde resi a formaldehyde resi blanket, bonded e blanket, metal forced	erial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.028 0.03 0.035 0.04 0.054 0.042 0.036 0.032	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 30 45 37 10 14 14 24 48	lation Specific heat (J kg-1 K-1) 1400 1470 170 1710 1	Thermal Diffusivity (M^2 S-1) 9.5238 2.1648 4.53518 6.3492 6.3492 6.3501 6.43501 2.85714 2.62391 4.92956 2.11266 9.38961 3.82294 4.62771
Mate Mate Mate Mate mini- am: amol anol, rigid yurethane, freon-fille yurethane, freon-fille yurethane, freon-fille a formaldehyde resi heral fibre/wool: e blanket, metal nforced e board, preformed	erial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.035 0.03 0.035 0.035 0.042 0.054 0.042 0.036 0.032 0.032 0.038	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 30 45 37 10 10 14 12 24 48 48 140	lation Specific heat (J kg-1 K-1) 1400 1470 1470 1470 1470 1470 1470 1470	Thermal Diffusivity (M^2 S-1) 9.5238 2.1643 4.53514 6.3492 4.53514 6.43501 2.62391 2.62391 4.92954 2.11264 9.38961 3.82294 4.62777 2.30261
100 - 1	erial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.03 0.03 0.03 0.03 0.03 0.0	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 45 30 45 45 30 45 45 30 45 45 45 45 45 45 45 45 45 45 45 45 45	lation Specific heat (J kg-1 K-1) 1400 1470 1710 1700	Thermal Diffusivity (M^2 S-1) 9.5238 2.164 4.5351 6.3492 4.5351 6.3492 4.5351 6.4350 2.8571 2.6239 4.92956 2.11266 9.38961 3.82294 4.62777 2.30265 2.19826
Human control of the second seco	erial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.035 0.03 0.035 0.03 0.035 0.04 0.054 0.042 0.036 0.032 0.032 0.038 0.042 0.038 0.046 0.042 0.051 0.061	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 30 45 30 45 37 10 14 12 24 48 140 140 140 240 290 370	lation Specific heat (J kg-1 K-1) 1400 1470 1710 1710 1710 1710 1710 1700	Thermal Diffusivity (M^2 S-1) 9.5238 2.1643 4.53513 6.3492 4.53513 6.3492 2.1643 4.53513 6.3492 2.1523 6.4350 2.85714 2.6239 4.92956 2.11266 9.38961 3.82294 4.62777 2.30263 2.19826 2.79433
(III) 100 - 80 - 60 - 40 - 20 - 0 1970	erial	Year of Da	ta M	aterial Properties (Cl ctivity (W-m-1 K-1) 0.04 0.035 0.03 0.03 0.03 0.03 0.03 0.03 0.0	BSE Data) for Insu Density (kg m -3) 30 110 45 30 45 45 30 45 45 30 45 45 30 45 45 45 45 45 45 45 45 45 45 45 45 45	lation Specific heat (J kg-1 K-1) 1400 1470 1710 1700	Thermal Diffusivity (M^2 S-1) 9.5238 2.1644 4.53513 6.3492 4.53513 6.3492 2.6239 2.6239 4.92956 2.11261 9.38961 3.8229 4.62777 2.30261 2.19821 2.79431 2.46475

Material Properties (CIBSE Data) for Insulation								
Material	Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)			
	At23.8°C	0.048	200	710	3.38028E-07			
	At 93.3°C	0.048	100	710	6.76056E-07			
	At 93.3⁻'C	0.065	200	710	4.57746E-07			
wool		0.038	140	840	3.23129E-07			
wool, fibrous		0.043	96	840	5.33234E-07			
wool, resin bonded		0.036	99	1000	3.63636E-07			
Rock wool	At 10'C	0.037	23	710	2.26577E-06			
	At 10'C	0.033			7.74648E-07			
	At 10°C	0.033	100	710	4.64789E-07			
	At 10`C	0.034	200	710	2.39437E-07			
unbonded		0.047	92	840	6.08178E-07			
		0.043	150	840	3.4127E-07			
Cork:		0.04	110	1800	2.0202E-07			
board		0.04	160	1890	1.32275E-07			
expanded		0.044	150	1760	1.66667E-07			
expanded, impregnated		0.043	150	1760	1.62879E-07			
slab		0.043	160	960	2.79948E-07			
		0.055	300	960	1.90972E-07			
tiles	Conditioned	0.08	530	1800	8.38574E-08			

Material Profile: Iron							
			Embodied Energy (E	E) Database Statistics - N	/J/Kg		
Main Material	No. Records Average EE Standard		Standard Deviation	Minimum EE	Maximum EE	Comments or	
Iron	21	24.62	7.50	11.70	36.30		
Iron, General	21	24.62	7.50	11.70	36.30	The collecte	
Other Specification		20.50	20.50			coefficients	
Unspecified		29.80	5.18		35.00		
Virgin	12	21.50	7.32	11.70	36.30		
		Select	ed Embodied Energy	& Carbon Values and Ass	sociated Data		
	Embodied Energy -	Embodied Carbon - Kg	Boundaries	Best EE Range - MJ/Kg			
Material	MJ/Kg	CO2/Kg		Low EE	High EE		
(Virgin) Iron - Statistical Average	25	1.91 (?)	Cradle to Gate	11.7	36.3	See comments which is NOT database.	
Comments It is important to note that data for Iron is not of high enough quality to accurately estimate the embodied energy and carbon coefficients for a broad range of iron product the latter normally undergoes an extra processing operation, as such it would be expected to have a lower embodied energy and carbon than steel. Unfortunately a many people confuse the two materials. It was considered a possibility that some of the embodied energy data collected and categorised as Iron where in fact ster insufficient to accurately determine the embodied energy and carbon of Iron. In the absence of improved data the selected embodied energy coefficient represents the Although it can't be stated with absolute certainty (because of ICE's reliance on secondary data resources) it was estimated that the selected value represents virgin i the expectation that steel requires more processing energy than iron.							
	Material Scatter Graph				Fuel Split & Embodie	d Carbon Data	


Unknown fuel split.

Material Properties (CIBSE Data)								
Material		Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Th			
Iron			7870					

on the Database Statistics:
ected data was not sufficient to estimate ents for a broad range of iron products.
Specific Comments
nts below. This is a statistical average, OT normally employed within the ICE
products. Iron shares the same ore as steel ely and as a consequence of their similarities steel. Nevertheless the data available was the average of the data within the database. in iron. This would appear to be in line with
Pata
hermal Diffusivity (M^2 S-1)

			Material P	rofile: Lead		
		Embo	odied Energy (EE) D	atabase Statistics	- MJ/Kg	
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
Lead	33	45.17	43.72	7.20	190.00	
Lead, General Predominantly Recycled	33 6	45.17 14.29	43.72	7.20	190.00 35.53	None
Unspecified	9	41.83	35.63	3 20.00	134.00	
Virgin	18		•		190.00	
		Selected Em	bodied Energy & Ca	1		
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Best Low EE	EE Range - MJ/Kg High EE	Specific Comments
General Lead	25	1.33		16	33	Assumes recycling rate of 61.5%
Primary Lead	49	2.61		30	60	Selected value is representative of a small band frequently quoted values.
Secondary Lead	10	0.53	Cradle to Gate	7	16	
Primary Lead Produced with Zinc	13.6 to 23.6	0.72 to 1.25		-	-	These values assumed that the energy allocated the lead and zinc was divided assuming that the energy attributable to zinc was equal to that fro other methods of producing zinc. The other value (above) assumed a mass based allocation.
Comments	lead and the zinc. assume that the z	Some authors will assume	e that the energy is o is would be required	divided equally betw	een the masses of each metal	difficulty defining the energy attributable to th I (or even on an economic basis). Others w les above have assumed that the energy wa
	Material Sc	atter Graph			Fuel Split & Embod	ied Carbon Data
	EE Scatter (Graph - Lead		Energy source	% of Embodied Energy from energy source	% of embodied carbon from energy source
200.00				Coal	7.6%	11.7%
		• •		LPG	0.0%	0.0%
160.00 -				Oil	4.5%	5.3%
H 140.00 - 120.00 -		•		Natural gas	44.3%	38.5%
50 100.00 - 10 80.00 -				Electricity	43.6%	44.5%
B 60.00		•		Other	0.0%	0.0%
Abi 100.00 - Lu 80.00 - Di 60.00 - Di 40.00 - Lu 20.00 -		•. •	• •	Total	100.0%	100.0%
E 20.00 0.00 1965 1970		985 1990 1995 2000 ear of Data	• 2005 2010		ied Carbon Comments:	
					Historical embodied car	bon per unit fuel use
				120	& Tin	r unit energy use for Lead, Zinc n
				Embodied ca antribution p argy use - 199 09 index		
	1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Year					
				Coa	I Manufactured fuel 1 LPG Ga	s oil 🛢 Fuel oil 🧧 Natural gas 🛢 Electricity
Material Properties (CIBSE Data)						
Material		Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)
oad			35	5 11340	130	
ead			35	, 11340	130	2.37417E-

			Mate	eria	al Profile: Lime		
			Embodied Energy	y (E	E) Database Statistics - I	MJ/Kg	
Main Material	No. Records	Average EE	Standard Deviation	ו	Minimum EE	Maximum EE	Comments
Lime	39	4.57	4.57 2.79		0.04	10.24	
Lime, General	39	4.57	2.79		0.04	10.24	
Unspecified	4	6.51		.36			
Virgin	35			.40			
		Selec	ted Embodied Energ	gy (& Carbon Values and As	sociated Data	
	Finds a dia di Finanzia	Freehadied Carbon Kr			Best EE	Range - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE		
General Lime	5.3	0.74	Cradle to Gate		4	9.1	Wide range, Although the cement the n its embodied
Comments	was observed from lower embodied er energy. It should process related ca for deconstruction,	n the respectable sample s nergy. Yield, density, and be noted that embodied er rbon dioxide emissions lim rather than demolition. Th	size of 39 data record time in the kiln are a nergy is, in itself, is r he has a lower emboo he re-carbonation tha	ds. all v not diec at o	Lime is fired in the kiln to vital parameters to total en evidence to discredit limes d carbon than cement. Add	rn that the embodied energy of a lower temperature than ceme ergy consumption. This is pres s environmental claims. Due to litional benefits of using lime based both cement and lime based sary.	ent, which is ented as a a more fav ased mortar
	Material S	catter Graph				Fuel Split & Embodie	d Carbon D
EE Scatter Graph - Lime				Energy source	% of Embodied Energy from energy source	% of ei	
				Coal	0.0%		

© University of Bath 2008

its on the Database Statistics:

None

Specific Comments

e, dependent upon manufacturing technology. he embodied energy was higher than for mix of fuels were cleaner in the UK, as such ed carbon was lower.

s slightly higher than for cement. This is often misconceived as proof for a a possibility for the higher embodied avourable fuel mix and slightly lower ar would include the increased ability when exposed to air) will reduce the

Data

embodied carbon from energy source					
0.0%					
0.0%					
2.9%					
75.4%					
21.7%					
0.0%					
100.0%					

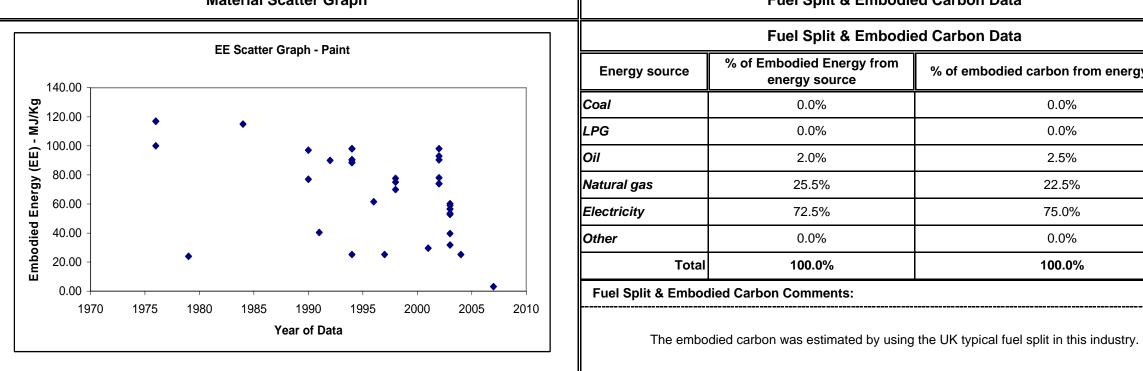
			Mater	rial Profile: Linoleum	1	
			Embodied Energ	gy (EE) Database Statistic	s - MJ/Kg	
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments or
Linoleum	9	30.49	34.38	1.00	116.00	
Linoleum, General	9	30.49	34.38	1.00	116.00	There is a very
Unspecified	8	30.07	36.73	1.00	11	16.00 much higher tha
Virgin	1	33.84		33.84		-
	·		Selected Embodied Ene	ergy & Carbon Values and		<u> </u>
	Embodied Energy -	Embodied Carbon - Kg		Best EE Rar	nge - MJ/Kg	
Material	MJ/Kg	CO2/Kg	Boundaries	Low EE	High EE	
General Linoleum	25	1.21	Cradle to Grave	12	39.4	
	Materi	al Scatter Graph			Fuel Split & Em	nbodied Carbon D
140.00	EE Scat	ter Graph - Linoleum				
120.00 - 100.00 -	•					
H 60.00 - 60.00 - 40.00 - 20.00 -				Unknown fuel split	, embodied carbon was e	estimated from the
40.00 -	•	•	•			
20.00 0.00	•	•	.			

	Material Properties (CIBSE Data)								
	Material	L Condition	Thermal conductivity(W m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)				
L	inoleum		0.19	1200	1470				

Year of Data

s on the Database Statistics:
very large data range due to one record which is than other sources of data, see scatter graph.
Specific Comments
Small sample size
to analyse linoleum from cradle to grave over
n Data
the data available in the database
Thermal Diffusivity (M^2 S-1)

ICE V1.6a


1.0771E-07

Material Profile: Miscellaneous Materials

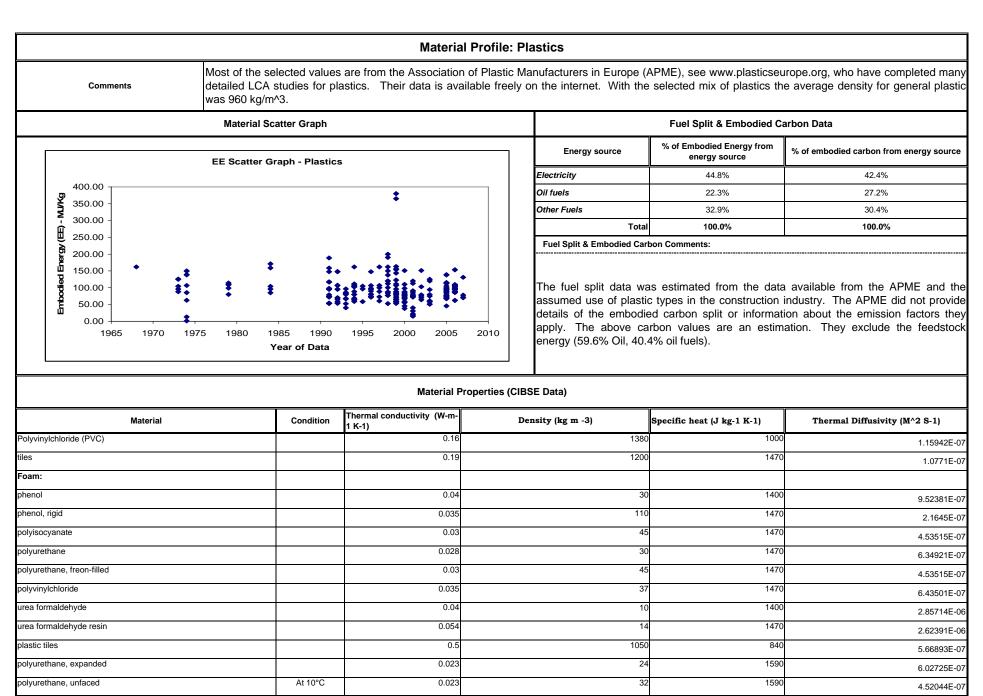
NOTE: These database statistics have been presented here for a number of miscellaneous materials, it was not possible to create a standard material profile.

			(EE) Database Statistics - MJ/Kg		
n Material	No. Records	Average	Standard Deviation	Minimum	Maximum
cellaneous	95	160.15	496.64	0.08	3710.00
Argon Unspecified	1	6.80	6.80 6.80	6.80 6.80	
Asbestos	1	7.40	7.40	7.40	
Virgin Calcium Silicate	1	7.40	i de la constance de la constan	7.40	
Unspecified	1	2.00	2.00	2.00	
Carpet Cushion/Pad	1	18.60	18.60	18.60	
Unspecified Carpet Underlay	1	18.60	18.60	18.60	
Unspecified	1	18.50 18.50		18.50	
Cellulose	6	5.71	6.94	0.94	19.60
Unspecified Virgin	4	2.59 11.95		0.94	4. 19.
Chromium	1	83.00	83.00	83.00	
Virgin	1	83.00		83.00	
Cork Unspecified	1	4.00 4.00	4.00 4.00	4.00	
Cotton	6	146.38	108.52	27.10	350.00
Unspecified Virgin	5	105.66		27.10 350.00	143.
unp Proof Course/Membrane	5	350.00	350.00	100.00	183.00
Unspecified	4	142.73	35.90	105.90	183.
Virgin Felt	5		100.00 24.63	100.00	75.00
Unspecified	5 4	39.50		10.08	75.00
Virgin	1	22.30		22.30	
Flax	1	33.50	33.50	33.50	
Unspecified Fly ash	2	0.09	0.02	0.08	0.10
Unspecified	2	0.09		0.08	0.10
General Carpet	6	135.68	127.38	67.90	390.00
Unspecified Virgin	4			71.73 67.90	137. 390.
General Insulation	6	62.68	38.65	14.60	103.35
Unspecified Virgin	2	35.00 76.51	0.00 41.51	35.00 14.60	35. 103.
Grit	1	0.12	0.12	0.12	103.
Virgin	1	0.12	0.12	0.12	
Grout	1	30.80	30.80	30.80	
Unspecified GRP	2	30.80 97.50	30.80	30.80 95.00	100.00
Unspecified	- 1	100.00		100.00	
Virgin	1	95.00		95.00	
Lithium Virgin	1	853.00 853.00	853.00 853.00	853.00 853.00	
Mandolite	1	63.00	63.00	63.00	
Unspecified	1	63.00		63.00	
Manganese Virgin	1	52.00 52.00	52.00 52.00	52.00 52.00	
Mercury	1	87.00	87.00	87.00	
Virgin	1	87.00		87.00	
Mineral Wool Market Average	9	21.35 24.00	7.51 24.00	14.00 24.00	37.00
Unspecified	6	20.85	8.13	15.12	37
Virgin Molybedenum	1	21.50 378.00	10.61 378.00	14.00 378.00	29
Virgin	1	378.00 378.00		378.00 378.00	
Nickel	3	164.00	43.59	114.00	194.00
Virgin Perlite	3	<u> </u>	5.47	0.66	194 10.87
Unspecified	1	0.66		0.00	10.07
Virgin	2	10.04		9.20	10
Quartz powder Virgin	1	0.85	0.85	0.85	
Rock wool	5	18.11	4.10	14.00	25.00
Unspecified	4	18.28		14.00	25
Virgin Shingle	1	17.43 11.34	17.43	17.43 11.34	
Unspecified	'	11.34		11.34	
Silicon	1	2355.00	2355.00	2355.00	
Virgin Silver	1	2355.00	2355.00	2355.00 128.20	
Unspecified	' 1	128.20		128.20	
Slag	1	1.30	1.30	1.30	
Unspecified Starch	1	1.30	1.30	1.30	
Unspecified	1	15.00		15.00	
Stone wool	1	15.43	15.43	15.43	
Unspecified Straw	1	0.24		0.24	
Unspecified	1	0.24 0.24	0.24	0.24	
Terrazzo Tiles	1	1.40	1.40	1.40	
Unspecified Vanadium	1	1.40		1.40	
Virgin	1	3710.00 3710.00	3710.00 3710.00	3710.00 3710.00	
Vermiculite	2	3.97	4.59	0.72	7.22
Virgin	2	3.97		0.72	7
Vicuclad Unspecified	1	70.00 70.00	70.00 70.00	70.00 70.00	
Water	1	0.20	0.20	0.20	
Unspecified	1	0.20		0.20	
Wax Unspecified	1	52.00 52.00	52.00 52.00	52.00 52.00	
Unspecified Wood stain/Varnish	1	52.00	50.00	50.00	
Unspecified	1	50.00	50.00	50.00	
Wool Predominantly Recycled	4	33.23	49.24	3.00	106.00
Predominantly Recycled Unspecified	1			20.90	106
Yttrium	1	1470.00	1470.00	1470.00	
	1	1470.00	1470.00	1470.00	
Virgin Zirconium	1	1610.00	1610.00	1610.00	

Material Profile: Paint									
	Embodied Energy (EE) Database Statistics - MJ/Kg								
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:			
Paint	35	67.55	29.95	3.11	117.00				
Paint, General	35	67.55	29.95	3.11	117.00	None			
Unspecified	21	75.61	31.51	24.00	117.00	Nono			
Virgin	14	55.47	23.60	0 3.11 93.00					
	Selected Embodied Energy & Carbon Values and Associated Data								
	Embodied Energy -	Embedied Carbon Ka		Best I	EE Range - MJ/Kg				
Material	MJ/Kg		Boundaries	Low EE	High EE	Specific Comments			
General Paint	68	3.56				Large variations in data, especially for embodied carbon.			
EXAMPLE: Single Coat	10.2 MJ/Sqm	0.53 kgCO2/Sqm				Assume 6.66 Sqm Coverage per kg			
EXAMPLE: Double Coat	20.4 MJ/Sqm	1.06 kgCO2/Sqm	Cradle to Gate	High variation	perhaps as high as +/- 50%	Assume 3.33 Sqm Coverage per kg			
EXAMPLE: Triple Coat	30.6 MJ/Sqm	1.60 kgCO2/Sqm				Assume 2.22 Sqm Coverage per kg			
Comments Embodied Carbon values experience a particularly large data range for embodied carbon.									
	Materia	I Scatter Graph			Fuel Split & Embodie	ed Carbon Data			

died	carbon	from	energy	source
------	--------	------	--------	--------

0.0%	
0.0%	
2.5%	
22.5%	
75.0%	
0.0%	
100.0%	


			Material F	Profile: Paper		
		Embo	odied Energy (EE)	Database Statistics	s - MJ/Kg	
in Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
per Paper, Cardboard Other Specification	58 11 4	20101	14.07 14.51 16.13			
Predominantly Recycleo Unspecified	1 2	2 43.15	9.16 23.83 35.50	3 26.30	60.00	
Virgin Paper, General Paper Market Average	47	35.50 27.22	14.08 5.18 61.26 11.83 5.90 7.66 16.00		None	
Other Specification	3	3 14.60	3.73	3 12.20	18.90	
Unspecified Virgin	14	27.94	9.90	9.30	42.00	
<u>viigii</u>				Carbon Values and		<u>n</u>
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Best Low EE	EE Range - MJ/Kg High EE	Specific Comments
Paperboard (General onstruction purposes)	24.80	1.32		10	39	-
Fine Paper	28.20	1.50	Cradle to Gate	12	42	-
Wallpaper	36.40	1.93			(+/- 30%)	-
	Material Scat	ter Graph		Energy source	Fuel Split & Embodie	ed Carbon Data % of embodied carbon from energy sour
	EE Scatter Gra	nh - Panor		Energy source		% of embodied carbon from energy source
		pii - Fapei			energy source	
70.00		ри - гареі		Coal	energy source 4.3% 0.0%	6.7% 0.0%
	•• •	ри - гареі		Coal	4.3%	6.7%
	•• • • •	ри - гареі •	•	Coal LPG	4.3% 0.0%	6.7%
	•• • • • • •	ри - гареі	•	Coal LPG Oil Natural gas Electricity	4.3% 0.0% 0.3% 31.8% 63.6%	6.7% 0.0% 0.4% 27.7% 65.2%
	•••••	ри - гареі	•	Coal LPG Oil Natural gas Electricity Other	4.3% 0.0% 0.3% 31.8% 63.6% 0.0%	6.7% 0.0% 0.4% 27.7% 65.2% 0.0%
	•••••	ри - Гареі	•	Coal LPG Oil Natural gas Electricity Other Total	4.3% 0.0% 0.3% 31.8% 63.6% 0.0% 100.0%	6.7% 0.0% 0.4% 27.7% 65.2%
60.00 - (100 - 50.00 - (100 - 50.00 - 30.00 - 20.00 -	• • • • • • • • • • • • • • • • • • •	1990 1995 2000	2005 2010	Coal LPG Oil Natural gas Electricity Other Total Fuel Split & Emboo	4.3% 0.0% 0.3% 31.8% 63.6% 0.0% 100.0% died Carbon Comments:	6.7% 0.0% 0.4% 27.7% 65.2% 0.0%
Empodied Energy - 00.00 - 50.0	• • • • • • • • • • • • • • • • • • •		2005 2010	Coal LPG Oil Natural gas Electricity Other Total Fuel Split & Emboo	4.3% 0.0% 0.3% 31.8% 63.6% 0.0% 100.0% died Carbon Comments:	6.7% 0.0% 0.4% 27.7% 65.2% 0.0% 100.0% ical fuel split in the paper and paperboard indus
Empodied Energy (EE) - MJ/Kg 40.00	• • • • • • • • • • • • • • • • • • •	1990 1995 2000	2005 2010	Coal LPG Oil Natural gas Electricity Other Total Fuel Split & Embood The embodied carbon 120.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 0.00 0.00	4.3% 0.0% 0.3% 31.8% 63.6% 0.0% 100.0% died Carbon Comments: was estimated by using the UK typ Historical embodied carb mbodied carbon contributions per Cardboard	6.7% 0.0% 0.4% 27.7% 65.2% 0.0% 100.0% 100.0% runit energy use for 0.0% 0.0% 100.0%

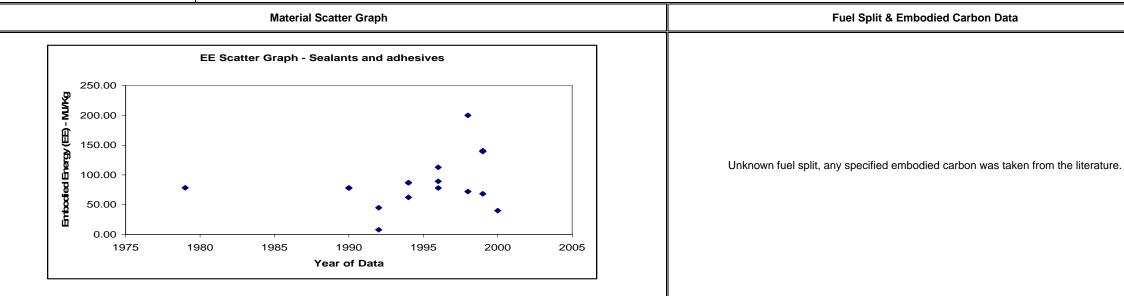
Material Properties (CIBSE Data)									
Material	Condition	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)					
- bitumen impregnated paper		0.06	1090	1000	5.50459E-08				
- laminated paper		0.072	480	1380	1.08696E-07				

			odied Energy (EE) D		r	
ain Material Ister	No. Records 40	Average EE 4.03	Standard Deviation 2.55	Minimum EE 0.03	Maximum EE 12.20	Comments on the Database Statistics:
Plaster, General	40 7	3.50	2.85	1.40	9.73	
Unspecified			0.90	1.40	3.24	
Virgin Plaster, Gypsum	16	5.83 3.48	5.52 2.06	1.93 0.90	<u>9.73</u> 8.64	
Market Average		3.20	3.20	3.20	-	None
Unspecified Virgin		<u>3.62</u> 1.81	2.16 1.81	0.90 1.81	8.64	
Plaster, Plasterboard	17	4.76	2.79	0.03	12.20	
redominantly Recycled Unspecified		<u>2.24</u> 4.95	2.24 1.89	2.24 2.70	8.60	
Virgin				0.03		
		Selected En	nbodied Energy & Ca	arbon Values and	Associated Data	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Best Low EE	EE Range - MJ/Kg High EE	Specific Comments
General Plaster	1.8	0.12		1.4	3.2	The selected values are from the lower end of t range, please see comments.
Plasterboard	6.75	0.38	Cradle to Gate		-	
14.00 5 3 12.00 - 	EE Scatter	r Graph - Plaster	•			
EED 10.00 - 8.00 - 6.00 - 4.00 - • 2.00 -			•	Unknown	fuel split, embodied carbon was	s estimated from a main resource.
2.00 0.00 1965 195	• 70 1975 1980	1985 1990 1995 Year of Data	2000 2005			
0.00		Year of Data	Material Proper	ties (CIBSE Data)		Thermal Diffusivity (MAC S 1)
0.00 1965 197		Year of Data	Material Proper Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)
0.00 4		Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72	Density (kg m -3) 1760	Specific heat (J kg-1 K-1) 840	4.87013E
0.00 1965 197 1965 197 Materi nent plaster	ial	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5	Density (kg m -3) 1760 1900	Specific heat (J kg-1 K-1) 840 840	4.87013E 9.3985E
0.00 1965 197 1965 197 Materi nent plaster	ial	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72	Density (kg m -3) 1760 1900 1860	Specific heat (J kg-1 K-1) 840 840 840	
0.00 4	ial	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5	Density (kg m -3) 1760 1900	Specific heat (J kg-1 K-1) 840 840 840	4.87013E 9.3985E
0.00 1965 197 1965 197 Materi hent plaster hent plaster, sand aggro hent screed	ial	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72	Density (kg m -3) 1760 1900 1860	Specific heat (J kg-1 K-1) 840 840 650	4.87013E 9.3985E 4.60829E 1.02564E
0.00 1965 197 1965 197 Materi nent plaster nent plaster, sand aggro nent screed sum	ial	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72 1.4	Density (kg m -3) 1760 1900 1860 2100	Specific heat (J kg-1 K-1) 840 840 840 650 840	4.87013E 9.3985E 4.60829E 1.02564E 4.16667E
0.00 4 1965 197 1965 197 Materi nent plaster nent plaster, sand aggro nent screed sum sum plaster	ial regate	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72 1.4 0.42 0.51	Density (kg m -3) 1760 1900 1860 2100 1200 1120	Specific heat (J kg-1 K-1) 840 840 840 840 840 960	4.87013E 9.3985E 4.60829E 1.02564E 4.16667E 4.7433E
0.00 1965 197 1965 197 Materi Inent plaster Inent plaster, sand aggre Inent screed Sum Sum plaster Sum plaster, perlite agg	ial egate	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72 1.4 0.42 0.51 0.22	Density (kg m -3) 1760 1900 1860 2100 1200 1120 720	Specific heat (J kg-1 K-1) 840 840 840 650 840 960 1340	4.87013E 9.3985E 4.60829E 1.02564E 4.16667E 4.7433E
0.00 1965 197 1965 197 Materi nent plaster nent plaster, sand aggro nent screed sum sum plaster sum plaster, perlite agg sum plaster, sand aggro	ial egate	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72 1.4 0.42 0.51 0.22 0.81	Density (kg m -3) 1760 1900 1860 2100 1200 1120 720 1680	Specific heat (J kg-1 K-1) 840 840 840 650 840 960 1340 840	4.87013E 9.3985E 4.60829E 1.02564E 4.16667E
0.00 1965 197 1965 197 Materi nent plaster nent plaster, sand aggro nent screed sum sum plaster sum plaster, perlite agg sum plaster, sand aggro	ial egate	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72 1.4 0.42 0.51 0.22	Density (kg m -3) 1760 1900 1860 2100 1200 1120 720	Specific heat (J kg-1 K-1) 840 840 840 650 840 960 1340 840	4.87013E 9.3985E 4.60829E 1.02564E 4.16667E 4.7433E 2.28027E 5.7398E
0.00 4	ial egate	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72 1.4 0.42 0.51 0.22 0.81	Density (kg m -3) 1760 1900 1860 2100 1200 1120 720 1680	Specific heat (J kg-1 K-1) 840 840 840 840 840 840 1340 840 840 840 840 840 840 840 840 840 840 840 840 840	4.87013E 9.3985E 4.60829E 1.02564E 4.16667E 4.7433E 2.28027E
0.00	ial egate	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72 1.4 0.42 0.51 0.22 0.81 0.16	Density (kg m -3) 1760 1900 1860 2100 1200 1120 720 1680 800	Specific heat (J kg-1 K-1) 840 840 840 840 840 840 1340 840 840 840 840 840 840 840 840 840 840 840 840 840	4.87013E 9.3985E 4.60829E 1.02564E 4.16667E 4.7433E 2.28027E 5.7398E 2.38095E 7.03463E
0.00 4	ial egate	Year of Data	Material Proper Thermal conductivity (W-m-1 K-1) 0.72 1.5 0.72 1.4 0.42 0.42 0.51 0.22 0.81 0.16 0.65	Density (kg m -3) 1760 1900 1860 2100 1200 1120 720 1680 800 1100	Specific heat (J kg-1 K-1) 840	4.870138 9.39858 4.608298 1.025648 4.166678 4.74338 2.280278 5.73988 2.380958

					3.27381E-07
		0.35	950	840	4.38596E-07
		0.52	1200	840	5.15873E-07
plaster ceiling tiles		0.38	1120	840	4.03912E-07
plaster, lightweight aggregate		0.23	720	840	3.80291E-07
Plaster, sand aggregate		0.82	1680	840	5.81066E-07
plasterboard		0.16	950	840	2.00501E-07
render, synthetic resin, exterior insulation		0.7	1100	900	7.07071E-07
rendering	Moisture content 1%	1.13	1430	1000	7.9021E-07
	Moisture content 8%	0.79	1330	1000	5.93985E-07
		0.2	720	840	3.30688E-07

			Materi	al Profile: Pla	stics		
			Embodied Energy				
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments	s on the Database Statistics:
Plastics Plastics, ABS	219 8	93.91 77.83	42.84 45.17	1.24 1.24	380.00 114.20		
Market Average Predominantly Recycled	1	95.30 7.19	95.30 8.41	95.30 1.24	13.1		
Unspecified Virgin		114.20	15.19 114.20	79.90 114.20	112.2	0	
plastics, Acrylic Unspecified	3	90.67 70.50	37.82 20.51	56.00 56.00	131.00 85.0	0	
Virgin Plastics, General	1 24	131.00 105.30	131.00 37.67	131.00 45.70	162.00	-	
Unspecified Virgin	11 13 11		41.59 26.70 25.39	73.60 45.70 18.60	162.0 151.1 103.00		
Plastics, High Density Polyethylene (HDPE) Market Average	2	80.55 18.60	5.44	76.70	84.4	0	
Predominantly Recycled Unspecified Virgin	1 6		18.60 8.96 16.83	18.60 80.98 51.00	- 103.0 74.8		
Virgin Plastics, Low Density Polyethylene (LDPE) Market Average	7	77.72 83.70	16.83 16.26 7.92	51.00 51.00 78.10	103.00 89.3		
Unspecified Virgin	3	82.55 64.50	7.92 18.28 19.09	67.80 51.00	89.3 103.0 78.0	0	
Plastics, Nylon Market Average	13	160.07 138.60	66.60 138.60	79.70 138.60	365.00	-	
Unspecified Virgin	11		27.76	79.70	190.0	0	
Plastics, Polyamide Resin (PA) Unspecified	1	137.60 137.60	137.60	137.60 137.60	-	-	
Plastics, Polycarbonate Market Average	5	109.30 112.90	30.59 112.90	80.30 112.90	158.51		
Unspecified Plastics, Polyester	4	108.40 103.83	35.25 122.11	80.30 53.70	158.5 380.00	exclusion of feedstock en	n examining these statistics, the inclusion or ergy is not apparent here, but only when
Unspecified Virgin	6 1	57.80 380.00	9.90 380.00	53.70 380.00	78.0		n ICE-Database. The majority of the records rgy, hence the statistics should be more
Plastics, Polyethylene Market Average	14 1	89.72 85.83	32.77 85.83	59.04 85.83	188.59	representative of	the inclusion of the feedstocks.
Unspecified Virgin		89.96 91.00	35.88 91.00	59.04 91.00	188.5	9	
Plastics, Polyethylterepthalate (PET) Predominantly Recycled	11 1	90.45 21.90	32.88 21.90	21.90 21.90	153.30	-	
Unspecified Virgin	6 4	109.50	18.03 31.77	59.40 77.30	107.0 153.3		
Plastics, Polypropylene Market Average	21	00100	<u>31.14</u> 21.06	40.20 73.37	<u> </u>		
Unspecified	15 3	107.44	31.56 43.94	40.20 62.20	171.0 149.95	<u>u</u>	
Plastics, Polystyrene Market Average	36		22.86	58.40 86.40	151.00 109.2	D	
Predominantly Recycled Unspecified	18	99.38	90.25 19.64	90.25 74.43	151.0		
Virgin Plastics, Polyurethane	11	80.10	30.09 15.95	65.20	110.00		
Unspecified Virgin	10	104.60	14.47 104.60	65.20 104.60	110.0	-	
Plastics, PVC Market Average Predominantly Recycled	44 6	70.61 68.95 15.10	21.00 13.59 15.10	15.10 57.54 15.10	<u>120.00</u> 95.1	ō	
Unspecified	. 27	72.73	19.61	30.83	120.0		
		71 53	22 27		106.6		
Plastics, Resin	10 1	200.00	23.37 200.00 200.00	38.20 200.00	- 106.6		
Plastics, Resin Unspecified Plastics, UPVC	10 1 2 1	200.00 200.00 94.70	200.00 200.00 35.78	38.20 200.00 200.00 69.40			
Plastics, Resin Unspecified	1 1 2 1	200.00 200.00 94.70 69.40 120.00	200.00 200.00 35.78 69.40 120.00	38.20 200.00 200.00 69.40 69.40 120.00	- 120.00		
Plastics, Resin Unspecified Plastics, UPVC Market Average	1 1 2 1	200.00 200.00 94.70 69.40 120.00	200.00 200.00 35.78 69.40	38.20 200.00 200.00 69.40 69.40 120.00	120.00 es and Associated Data		
Plastics, Resin Unspecified Plastics, UPVC Market Average	1 1 2 1	200.00 200.00 94.70 69.40 120.00	200.00 200.00 35.78 69.40 120.00	38.20 200.00 200.00 69.40 69.40 120.00	120.00 es and Associated Data	2	Specific Comments
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified	1 2 1 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200.00 200.00 94.70 120.00 S Feedstock Energy (Included) -	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ Embodied Carbon - Kg	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified	1 2 1 Embodied Energy - MJ/Kg	200.00 200.00 94.70 120.00 S Feedstock Energy (Included) - MJ/Kg	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ Embodied Carbon - Kg CO2/Kg	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified Material General Plastic ABS	1 2 1 Embodied Energy - MJ/Kg 80.5 95.3	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ Embodied Carbon - Kg CO2/Kg 2.53 3.1	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified Material General Plastic	1 2 1 Embodied Energy - MJ/Kg 80.5	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4	200.00 200.00 35.78 69.40 120.00 Gelected Embodied Energ Embodied Carbon - Kg CO2/Kg 2.53 3.1 1.94	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified Material General Plastic ABS	1 2 1 Embodied Energy - MJ/Kg 80.5 95.3	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ Embodied Carbon - Kg CO2/Kg 2.53 3.1	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified General Plastic ABS General Polyethylene	1 2 1 Embodied Energy - MJ/Kg 80.5 95.3 83.1	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4	200.00 200.00 35.78 69.40 120.00 Gelected Embodied Energ Embodied Carbon - Kg CO2/Kg 2.53 3.1 1.94	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified Material General Plastic ABS General Polyethylene High Density Polyethylene (HDPE)	1 2 1 Embodied Energy - MJ/Kg 80.5 95.3 83.1 76.7	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3	200.00 200.00 35.78 69.40 120.00 ielected Embodied Energ Embodied Carbon - Kg CO2/Kg 2.53 3.1 1.94 1.6	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified Material General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE)	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3 80.5 95.3 83.1 76.7 84.4 78.1	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energy 2.53 3.1 1.94 1.6 2 1.7	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3 8 3 1 7 6.7 8 4.4 7 8.1 8 9.3	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energy 2.53 3.1 1.94 1.6 2 1.7 1.9	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified Material General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE)	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3 80.5 95.3 83.1 76.7 84.4 78.1	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energy 2.53 3.1 1.94 1.6 2 1.7	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3 8 3 1 7 6.7 8 4.4 7 8.1 8 9.3	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energy 2.53 3.1 1.94 1.6 2 1.7 1.9	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Unspecified Material General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 1 2 5 3 8 3 1 7 6.7 8 4.4 7 8.1 8 9.3 1 20.5 20.5 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6 Polycarbonate	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	- 120.00 es and Associated Data Best EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5	38.20 200.00 69.40 69.40 120.00 y & Carbon Valu	es and Associated Data Best EE Low EE	2 	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6 Polycarbonate	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6 Polycarbonate Polypropylene, Orientated Film	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 55.7	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6 2.7	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6 Polycarbonate Polycarbonate Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene Expanded Polystyrene	1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 55.7 54 46.2	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6 2.7 3.9 2.5	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HIDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6 Polycarbonate Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene General Purpose Polystyrene General Purpose Polystyrene	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 55.7 54 46.2 46.3	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6 2.7 3.9 2.5 2.7	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6 Polycarbonate Polycarbonate Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene Expanded Polystyrene	1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 55.7 54 46.2	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6 2.7 3.9 2.5	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Market Average Unspecified Material General Plastic ABS General Plastic High Density Polyethylene HIDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6 Polycarbonate Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene General Purpose Polystyrene General Purpose Polystyrene	1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 55.7 54 46.2 46.3	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6 2.7 3.9 2.5 2.7	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in
Plastics, Resin Unspecified Plastics, UPVC Market Average Matket Average Unspecified Material General Plastic ABS General Plastic General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6 Polycarbonate Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene General Purpose Polystyrene High Impact Polystyrene High Impact Polystyrene	1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 2 1 2 2 3 2 3 3 1 2 1 2 5 1 3 8 3 1 7 6.7 8 4.4 7 8 1 8 9.3 1 2 0.5 1 8 3 1 7 6.7 8 4.4 7 8 9 5 3 8 3 1 7 6.7 8 4.4 7 8 1 8 9.3 1 2 0.5 1 8 9 5 1 8 9 5 1 8 9 5 1 8 9 5 1 8 9 5 1 8 9 5 1 8 9 5 1 8 9 5 1 8 9 5 1 8 9 5 1 8 9 5 1 1 8 9 5 1 1 8 9 5 1 1 8 9 5 1 1 8 9 2 1 1 1 8 9 2 1 1 1 8 8 1 1 1 8 9 2 1 1 1 8 8 1 1 1 8 9 2 1 1 1 8 8 6 1 1 1 8 8 6 1 1 1 8 8 6 1 1 1 8 8 6 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8	200.00 94.70 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 55.7 54 46.2 46.3 46.4	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6 2.7 3.9 2.5 2.7 2.8	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in European construction
Plastics, Resin Unspecified Plastics, UPVC Market Average Material General Plastic ABS General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6 Polycarbonate Polycarbonate Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene High Impact Polystyrene High Impact Polystyrene Polyurethane	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 55.2 38.6 50.7 36.7 36.7 55.7 54 46.2 46.3 46.4 49.7 34.67	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6.5 6 2.7 3.9 2.5 2.7 2.8 3.4 3.4 3	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in European construction
Plastics, Resin Unspecified Plastics, UPVC Market Average Material Material General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6 Polycarbonate Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene High Impact Polystyrene High Impact Polystyrene Thermoformed Expanded Polystyrene	1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 55.7 54 46.2 46.3 46.4 49.7	200.00 200.00 35.78 69.40 120.00 ielected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6.5 6 2.7 3.9 2.5 2.7 2.8 3.4	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in European construction
Plastics, Resin Unspecified Plastics, UPVC Market Average Material General Plastic ABS General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6 Polycarbonate Polycarbonate Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene High Impact Polystyrene High Impact Polystyrene Polyurethane	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 55.2 38.6 50.7 36.7 36.7 55.7 54 46.2 46.3 46.4 49.7 34.67	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energ 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6.5 6 2.7 3.9 2.5 2.7 2.8 3.4 3.4 3	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in European construction European construction Poor data availability of feedstock energy Based on the market average use of types of PVC in the European
Plastics, Resin Unspecified Plastics, UPVC Market Average Material Inspecified Material General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6 Polycarbonate Polycarbonate Polypropylene, Injection Moulding Expanded Polystyrene General Purpose Polystyrene High Impact Polystyrene Polyurethane PVC General PVC Pipe PVC Pipe	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2 2 2 2 3 3 3 3 1 2 0.5 3 8 3.1 7 6.7 8 4.4 7 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8.6 1 12.9 9 9 2 115.1 8 8 8 6 8 6 8 6 1 12.9 9 9 2 115.1 8 8 8 7 1 1 8 8 6 8 8 8 8 8 8 8 7 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8	200.00 200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 36.7 55.7 54 46.2 46.3 46.4 49.7 34.67 28.1 24.4	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energe 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6.5 6 2.7 3.9 2.5 2.7 2.8 3.4 3 2.41 2.5	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in European construction European construction Poor data availability of feedstock energy Based on the market average use of types of PVC in the European
Plastics, Resin Unspecified Plastics, UPVC Market Average Material Material General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6 Polycarbonate Polypropylene, Orientated Film Polypropylene, Orientated Film Polypropylene, Injection Moulding Expanded Polystyrene High Impact Polystyrene Polyurethane PVC General PVC General	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2 2 3 3 3 3 1 2 5 1 3 8 3 1 7 6.7 8 4.4 7 8 9.3 1 2 0.5 1 3 8 3 1 7 6.7 8 4.4 7 8 9.3 1 2 0.5 1 3 8 3 1 2 0.5 1 3 8 3 1 2 0.5 1 3 8 3 1 2 0.5 1 3 8 3 1 2 0.5 1 3 8 3 1 2 0.5 1 3 8 3 1 2 0.5 1 3 8 3 1 2 0.5 1 3 8 9 3 1 2 0.5 1 3 8 9 3 1 2 0.5 1 3 8 6 1 1 2.9 9 9 2 1 15.1 8 8 6 8 6 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8	200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 55.2 38.6 50.7 36.7 55.7 54 46.2 46.3 46.4 49.7 34.67 28.1	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energe 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6.5 6 2.7 3.9 2.5 2.7 2.8 3.4 3 2.41	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in European construction European construction Poor data availability of feedstock energy Based on the market average use of types of PVC in the European
Plastics, Resin Unspecified Plastics, UPVC Market Average Material Inspecified Material General Plastic ABS General Polyethylene High Density Polyethylene (HDPE) HDPE Pipe Low Density Polyethylene (LDPE) LDPE Film Nylon 6 Nylon 6,6 Polycarbonate Polycarbonate Polypropylene, Injection Moulding Expanded Polystyrene General Purpose Polystyrene High Impact Polystyrene Polyurethane PVC General PVC Pipe PVC Pipe	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 2 2 2 2 3 3 3 3 1 2 0.5 3 8 3.1 7 6.7 8 4.4 7 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8 9.3 1 2 0.5 1 3 8.6 1 12.9 9 9 2 115.1 8 8 8 6 8 6 8 6 1 12.9 9 9 2 115.1 8 8 8 7 1 1 8 8 6 8 8 8 8 8 8 8 7 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8	200.00 94.70 69.40 120.00 S Feedstock Energy (Included) - MJ/Kg 35.6 48.6 54.4 54.3 55.1 51.6 55.2 38.6 50.7 36.7 36.7 55.7 54 46.2 46.3 46.4 49.7 34.67 28.1 24.4	200.00 200.00 35.78 69.40 120.00 Selected Embodied Energe 2.53 3.1 1.94 1.6 2 1.7 1.9 5.5 6.5 6.5 6 2.7 3.9 2.5 2.7 2.8 3.4 3 2.41 2.5	38.20 200.00 69.40 69.40 y & Carbon Valu Boundaries	es and Associated Data Best EE Low EE	Range - MJ/Kg High EE	type of plastic used in the European construction industry. Average density 960 kg/m^3 Based on average use of types of PE in European construction

			Ма	terial Profile	e: Rubber					
			Embodied En	ergy (EE) Datal	base Statistics - M.	J/Kg				
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments	on the Database Statistics:			
Rubber	16	96.88	38.86	40.30	150.40					
Rubber, General Unspecified	8	109.33 140.59	44.90 12.58	40.30 119.56	150.40					
Virgin			12.58			Care must be taken with these sta	tistics, some include and some exclude feedstock			
Rubber, Natural	4	68.98	1.68	67.50	70.80		ose selected by the authors, who have analysed			
Unspecified	4	68.98	1.68	67.50						
Rubber, Synthetic	4	99.88	37.15	64.40	147.60					
Unspecified	4	99.88	37.15							
	1	1	Selected Embodied E	nergy & Carbo						
	Embodied Energy -	Feedstock Energy	Embodied Carbon - Kg		Best	EE Range - MJ/Kg				
Material	MJ/Kg	(Included) - MJ/Kg	CO2/Kg	Boundaries	Low EE	High EE	Specific Comments			
General Rubber	101.7	41.1	3.18	Cradle to Gate	Not enough data for a	accurate range. Estimated range +/- 30%	Assumes that natural rubber accounts for 35% of market (between 30-40%; info source: Materials Information Service & http://www.azom.com/)			
Synthetic Rubber	120	42	4.02							
Natural Rubber	67.6	39.43	1.63				The feedstock energy was from the production of carbon black, which is used in natural rubber production.			
		Material Scatter G	aph			Fuel Split & Embodie	ed Carbon Data			
		EE Scatter Graph - R	ubber		Energy source	% of Embodied Energy from energy source	% of embodied carbon from energy source			
					Coal	12.3%	17.4%			
9 160.00	•		•		LPG	0.0%	0.0%			
140.00 - 120.00 -			• •		Oil	11.3%	12.8%			
			• •		Natural gas	11.1%	8.8%			
					Electricity	65.3%	60.9%			
50.00 - 90.00 -				•	Other	0.0%	0.0%			
					Total	100.0%	99.9%			
60.00 - 60.00 - 40.00 - 20.00 -			•		Fuel Split & Emboo	died Carbon Comments:				
0.00		1980 1985 1	990 1995 2000 20	05 2010						
1965	5 1970 1975	Year of D				of embodied carbon are from the typ ude the feedstock energy.	ical UK fuel mix in the rubber industry. The above			
	5 1970 1975		ata	rial Properties	fuel mix does not inclu		ical UK fuel mix in the rubber industry. The above			
1965		Year of D	ata Mate Thermal conductivity (W-m- 1 K-1)	Densit	fuel mix does not inclu (CIBSE Data) :y (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)			
1965		Year of D	ata Mate Thermal conductivity (W-m-	Densit	fuel mix does not inclu (CIBSE Data)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)			
1965		Year of D	ata Mate Thermal conductivity (W-m- 1 K-1)	Densit	fuel mix does not inclu (CIBSE Data) :y (kg m -3)	ude the feedstock energy. Specific heat (J kg-1 K-1) 1500	Thermal Diffusivity (M^2 S-1) 7.55556E-08			
1965 Mate Rubber		Year of D	ata Mate Thermal conductivity (W-m- 1 K-1) 0.17	Densit	fuel mix does not inclu (CIBSE Data) y (kg m -3) 1500	Specific heat (J kg-1 K-1) 1500 70 1200	7.55556E-08 6.53061E-06 1.04167E-07			


			Material	Profile: Sand		
		E	mbodied Energy (EE)) Database Statistics	- MJ/Kg	
ain Material	17 0.22		Standard Deviation 0.23	Minimum EE	Maximum EE	Comments on the Database Statistics:
Sand, General Unspecified Virgin					0.63 0.63 0.55	These statistics are obscured by a few hig values (See scatter chart)
		•	Embodied Energy &			
	Embodied Energy -	Embodied Carbon - Kg	Best EE Range - MJ/Kg			
Material	MJ/Kg	CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General Sand	0.1	0.005	Cradle to Gate	0.05	0.15	None
Comments			at the median is in the	region of 0.1 MJ/kg. T	ransport will likely be significar	
	Mater	ial Scatter Graph		Energy source	Fuel Split & Embodie	d Carbon Data % of embodied carbon from source
	EE So	catter Graph - Sand			energy source	
0.70 9	•			Coal LPG	0.0%	0.0%
0.60 -	•	•	•	Oil	19.8%	22.7%
H 0.50 -				Natural gas	14.9%	12.6%
0.40 -			•	Electricity	65.3%	64.7%
9 0.30 - 19 0.20 -				Other	0.0%	0.0%
0.60 - 0.50 - 0.40 - 0.30 - 0.30 - 0.20 - 0.20 - 0.10 -	•	• •	•	Total		100.0%
<u>ы</u> 0.00	• • ·	,	•	Fuel Split & Emboo	lied Carbon Comments:	
1970	1975 1980	1985 1990 1995 Year of Data	2000 2005	The embod	ied carbon was estimated by using	the UK typical fuel split in this industry.
					Historical embodied carbo	on per unit fuel use
					bodied carbon contributions Aggregates, sand	
				120.00		
				120.00		
				120.00 - 120.00 - 100.00	Aggregates, sand	A & gravel
				120.00 100.00	Aggregates, sand	4 & gravel
			Material Prop	120.00 100.00	Aggregates, sand	4 & gravel
Mat	erial	Condition	Material Prop Thermal conductivity (m-1 K-1)	120.00 000 100.00 100.00 100.00 100.00 100 1	Aggregates, sand	4 & gravel

			Material Profile	: Sealants & Adh	esives			
Embodied Energy (EE) Database Statistics - MJ/Kg								
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the D		
Sealants and adhesives	15	86.62	46.81	8.00	200.00			
Sealants and adhesives, Epoxide Resin	2	139.96	0.91	139.32	140.60			
Market Average	1	139.32	139.32	139.32	-			
Unspecified	1	140.60	140.60	140.60	-			
Sealants and adhesives, General Adhesives	2	61.67	23.57	45.00	78.34			
Unspecified	2	61.67	23.57	45.00	78.34			
Sealants and adhesives, General sealants	1	8.00	8.00	8.00	-	There were more materials (sealants and adhesiv		
Unspecified	1	8.00	8.00	8.00	-	for this inventory, as can be observed from the		
Sealants and adhesives, Mastic Sealant	2	131.14	97.38	62.28	200.00	resources made selection of coefficients difficult.		
Unspecified	2	131.14	97.38	62.28	200.00			
Sealants and adhesives, melamine resin	1	112.81	112.81	112.81	-			
Unspecified	1	112.81	112.81	112.81	-			
Sealants and adhesives, Phenol Formaldehyde	2	88.16	1.64	87.00	89.32			
Unspecified	2	88.16	1.64	87.00	89.32			
Sealants and adhesives, Urea Formaldehyde	5	67.34	15.85	40.00	78.20			
Unspecified	5	67.34	15.85	40.00	78.20			
		Sele	cted Embodied Energy	& Carbon Values and	Associated Data			

	Embodied Energy -	Feedstock Energy (Included)	Embodied Carbon - Kg		Best EE Ra	nge - MJ/Kg	
Material	MJ/Kg	- MJ/Kg	CO2/Kg	Boundaries	Low EE	High EE	
Epoxide Resin	139.32	42.6	5.91	Cradle to Gate	(+/- :	20%)	
Mastic Sealant	62.28 to 200	?	?	Two different values from two sources, they have different boundaries: Lower value Cradle to Gate, upper value Cradle to Site!	-	-	Only two data sources value of feedstock ene
Melamine Resin	113	?	?	Cradle to Gate	-	-	Reference 77
Phenol Formaldehyde	87 to 89.32	?	?	Cradle to Grave	-	-	data includes an unkno
Urea Formaldehyde	40 to 78.2	?	1.3 to 2.26	Cradle to Site	-	-	data includes an unkno

Comments

The data on sealants & adhesives was very limited. There was very little feedstock and embodied energy data. The values for mastic sealant, phenol formal feedstock energy, which is an unknown quantity in these materials.

Database Statistics:
sives) in the ICE database than have been used e database statistics. limited data from quality t.
Specific Comments
es, with large range, data includes an unknown ergy!
nown value of feedstock energy!
nown value of feedstock energy!
aldehyde and urea formaldehyde include
on Data

			Material F	Profile: Soil		
			Embodied Energy (EE) D	atabase Statistics	- MJ/Kg	
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
Soil Soil, General	7 7	0.45 0.45	0.26 0.26	0.10 0.10	0.73 0.73	None
Unspecified	7	0.45	0.26 d Embodied Energy & Ca	0.10	0.73	
				Best EE Range - MJ/Kg		
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE High EE		Specific Comments
General (Rammed) Soil	0.45	0.023	Cradle to Site	0.15	0.73	-
Comments	See embodied carl	bon comments.				
	Mate	rial Scatter Graph			Fuel Split & Embodie	d Carbon Data
	EES	Scatter Graph - Soil		Energy source	% of Embodied Energy from energy source	% of embodied carbon from source
				Coal	0.0%	0.0%
5 0.80		•		LPG	0.0%	0.0%
b N/CW 0.70 - W 0.60 -		•		Oil	19.8%	22.7%
				Natural gas	14.9%	12.6%
ii 0.50 - bi 0.40 -		•		Electricity	65.3%	64.7%
u 0.30				Other	0.0%	0.0%
b 0.20 -		•		Total	100.0% died Carbon Comments:	100.0%
0.00	91 1992 1993 19	94 1995 1996 1997 1 Year of Data	998 1999 2000 2001	most closely related typical fuel split in the produced similar result	material, which was sand. The em his industry. Assuming the average	ras assumed that soil had similar fuel use to the abodied carbon was estimated by using the L e UK industrial fuel use (from all sectors) all ason it is believed that this provides a sufficie on.
					Historical embodied carbo	on per unit fuel use
				E	nbodied carbon contributions Aggregates, sand	
				00.001 Empodi ed carbon 100.00 100.00 Empodi ed carbon 100.00 00.0		
				0.00	990 1991 1992 1993 1994 1995 19	96 1997 1998 1999 2000 2001 2002 2003 Year
				Coal	Manufactured fuel 1 LPG Gas oil	Huel oil Natural gas Electricity
			Material Proper	ties (CIBSE Data)		
Mate	erial	Condition	Thermal conductivity (W-n 1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)
arth, common			1.2	8 1460	880	9.96264E-
earth, gravel-based			0.5	2 2050	180	1.40921E-

						Materi	al Profile:	Steel		
					Embod	ied Energy (EE) Database	Statistics - MJ/Kg	1	
ain Material		No. Records			Average EE		Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
eel		180			31.25		16.50	6.00	95.70	
Steel, General 50% Recycled		154	2		29.36	32.75	13.45 20.86	<u>6.00</u> 18.00	77.00 47.50	
Market Average			11			25.68	5.92	18.20	36.00	
Other Specification			2			19.40	0.71	18.90	19.90	
Predominantly Recycled Unspecified			33 49			13.60 31.96	4.86 10.61	<u>6.00</u> 12.50	23.40 77.00	
Virgin			57			37.48	12.07	12.00	63.42	None
Steel, Stainless		21	3		45.68	40.00	28.84	8.20	95.70 51.48	
Market Average Predominantly Recycled			2			48.36	6.22 0.00	40.20	11.00	
Unspecified			8			43.10	32.21	8.20	95.70	
Virgin Steel, Structural		5	8		30.91	57.80	28.76 3.74	<u>12.00</u> 25.50	81.77 35.90	
Unspecified		0	2		00.01	28.67	4.48	25.50	31.83	
Virgin			3			32.40	3.10	30.00	35.90	
				Sele	cted Embo	died Energy	& Carbon Va	lues and Associa	ted Data	
	Embo	died Energy -	MJ/Kg	Embodie	ed Carbon - F	(g CO2/Kg		Best	EE Range - MJ/Kg	
Material	UK Typical	Primary	Secondary	UK Typical	Primary	Secondary	Boundaries	Low EE	High EE	Specific Comments
General Stee	24.4	35.3	9.50	1.77	2.75	0.43				Estimated from UK's consumption of types of stee and worldwide recycled content 42.7%
Bar & rod	24.6	36.4	8.8	1.71	2.68	0.42				
Engineering stee	-	-	13.1	-	-	0.68				
Pipe	-	34.4	NTMR	-	2.7	NTMR				NTMR = Not Typical Manufacturing Route
plate		48.4	NTMR	-	3.19	NTMR			(+/- 30%)	NTMR = Not Typical Manufacturing Route
Section	25.4	36.8	10.0	1.78	2.78	0.44	Cradle to Gate			
Sheet Sheet - Galvanised		31.5 39.0	NTMR	-	2.51	NTMR				NTMR = Not Typical Manufacturing Route
Wire		36.0		-	2.83	-				
Stainless		-	-	6.15	-	-		11	81.8	4.3 MJ/kg Feedstock Energy (Included). We average data from Institute of Stainless Steel For (ISSF) was selected due to the large extent of study. Values specified are for the most popugrade (304).
Comments	completed to	o most detail d from other	ed steel LCI t sources. Ple	o date. Son ease see no	ne of the IIS	SI data has b	een processe		gories (Primary, secondary ma lent.	International Iron & Steel Institute (IISI), w terial). The results of this study are in line w
		Mate	erial Scatter	Graph					Fuel Split & Embod	ied Carbon Data
90.00 90.00 80.00 70.00 60.00 50.00 90.00 100 100 1965	1970 1	EE S	catter Graph	- Steel	2000	2005 2	2010			

No breakdown of fuel use or carbon emissions was available. There has not been an estimate of this breakdown by the author because the steel industry is complicated by the production of by-products (which may be attributed energy or carbon credits), excess electricity (they produce some of their own electricity) and non-fuel related emissions from the calcination of lime during the production process.

	by 100.00 - 80.00 - b 60.00 - 40.00 - 20.00 - 1970 1975 1980	◆ 1985 1990 1995 Year of Data	2000 2005 2	010		
			Material Pr	operties (CIBSE Data)		
	Material	Condition	Thermal conductivity (W- m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)
stainless	steel, 5% Ni		29	7850	480	7.69639E-06
stainless	steel, 20% Ni		16	8000	480	4.16667E-06
steel			45	7800	480	1.20192E-05

Year of Data

EE Scatter Graph - Stainless Steel

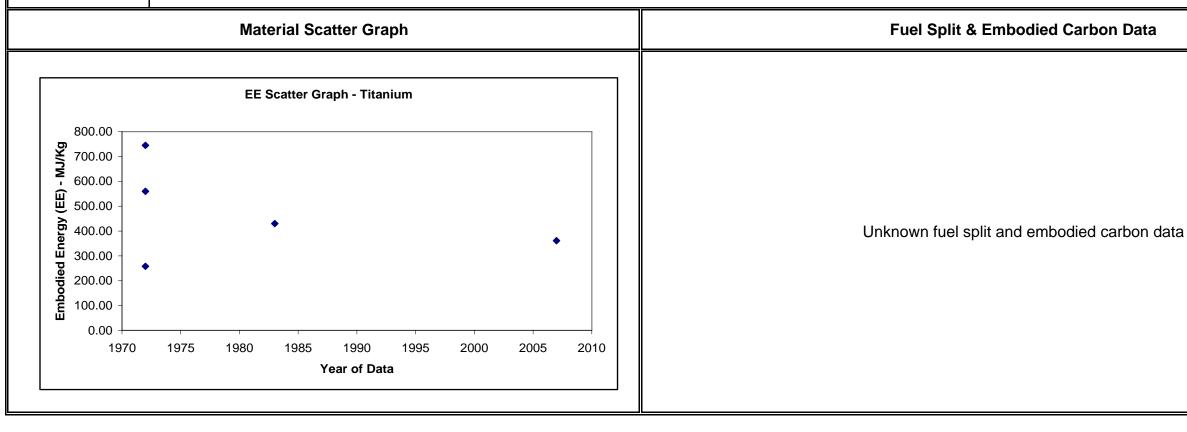
120.00

			Material F	Profile: Stone		
		Em	bodied Energy (EE)		s - MJ/Ka	
					· ····································	
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
stone Stone, General	54 18	1.26 1.23	2.35 1.74	0.02 0.02	13.90 6.80	
Predominantly Recycled Unspecified	<u> </u>	0.40			6.80	
Virgin Stone, Granite	75	1.00 4.10	1.24 6.01	0.02	3.60 13.90	
Unspecified	5 5		6.01		2.45	
Stone, Limestone Unspecified	17	0.42		0.03	2.45	None
Virgin Stone, Marble	1	0.37	0.37	0.30	3.33	
Unspecified Stone, Slate	3	1.88	0.03	0.30	3.33	
Virgin Stone, Slate	9	0.03	0.03	0.03	5.06	
Unspecified Virgin	7	1.07	1.58	0.10	4.57	
Virgin	Z	•	mbodied Energy & C			<u>N</u>
	Fach a Pack Factor			1	EE Range - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General Stone	1 (?)	0.056 (?)		0.1	3.6	Wide data range.
	• (•)		Cradle to Gate	0.1	0.0	
Stone Gravel/Chippings	0.3	0.017		0.3	0.9	only 3 data points The European sources quote 0. MJ/Kg which is at the low end of the range.
Granite	0.1 to 13.9 (!?)	0.006 to 0.781 (!?)	Cradle to Gate	Not enough data for a	ccurate range. Estimated range +/- 30%	Reference 22
Limestone	0.3	0.017		0.14	0.34	
Marble	2	0.112	Cradle to Gate	Not enough data for a	ccurate range. Estimated range +/-	
Marble tile	3.33	0.187	Cradle to grave	Not enough data for a	30%	Reference 36
Shale	0.03	0.002	Cradle to Gate	-	-	
Slate	0.1 to 1.0	0.006 to 0.056	Cradle to Gate	-	-	Large data range
	Material	Scatter Graph			Fuel Split & Embod	
	EE Scatter	Graph - Stone		Energy source	energy source	% of embodied carbon from source
9 16.00				Coal LPG	0.0%	0.0%
14.00 - 12.00 -		•		Oil	34.3%	38.2%
H 10.00 -				Natural gas	9.8%	8.1%
8.00 -		•		Electricity	55.9%	53.7%
u 6.00 - v v v v v v v	•	•*		Other	0.0%	0.0%
H 10.00 - b 8.00 - u 6.00 - p 4.00 - 2.00 -				Total	100.0%	100.0%
0.00	• 1980 1985	1990 1995 2000	2005 2010	Fuel Split & Embod	ied Carbon Comments:	
		Year of Data		The emb	odied carbon was estimated by usir	ng the UK typical fuel split in this industry.
					Historical embodied car	bon per unit fuel use
				Emi	oodied carbon contributions	s per unit energy use for Stone
				120.00 -		
				5 100.00		
				90.00 ·		
				Europodied carbon contribution		
				10.00 - p 56 40.00 -		
				20.00 -		
				0.00 -	990 1991 1992 1993 1994 1995	1996 1997 1998 1999 2000 2001 2002 2003
						Year
				Coal	Manufactured fuel 1 DLPG Gas	oil Fuel oil Natural gas Electricity
			Material Prope	erties (CIBSE Data)		
Materia		Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)
stone chippings for roofs		Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3) 1800	1000	5.33333E-0
		Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3) 1800 2880		5.33333E-0 1.44263E-00

		Material Pro	ofile: Stone		
granite, red		2.9	2650	900	1.21593E-06
hard stone (unspecified)		3.49	2880	840	1.44263E-06
		2.9	2750	840	1.25541E-06
limestone		1.5	2180	720	9.55657E-07
		2.9	2750	840	1.25541E-06
	At 50'C	1.8	2420	840	8.85478E-07
		2.9	2750	840	1.25541E-06
	Dry	2.91	2750	840	1.25974E-06
	Moist	3.49	2750	840	1.51082E-06
marble, white		2	2500	880	9.09091E-07
petit granit (blue stone)	Dry	2.91	2700	840	1.28307E-06
	Moist	3.49	2700	840	1.5388E-06
porphyry		3.49	2880	840	1.44263E-06
sandstone		1.83	2200	710	1.17157E-06
		3	2150	840	1.66113E-06
		1.3	2150	840	7.19823E-07
		5	2150	840	2.76855E-06
sandstone tiles	Dry	1.2	2000	840	7.14286E-07
slate		1.44	1600	1470	6.12245E-07
	At 50°C	1.72	2750	840	7.44589E-07
slate shale		2.1	2700	840	9.25926E-07
white calcareous stone	Firm, moist	2.09	2350	840	1.05876E-06
	Firm, dry	1.74	2350	840	8.81459E-07
	hard, moist	2.68	2550	840	1.25117E-06
	Hard, dry	2.21	2550	840	1.03175E-06
tufa, soft	Dry	0.35	1300	840	
	Moist	0.5	1300	1260	3.0525E-07

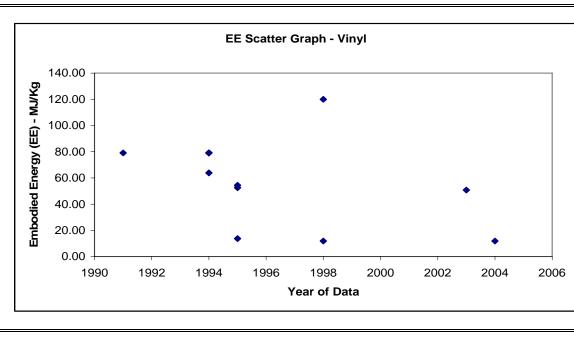
			Material Pr	ofile: Timber		
		Emb	odied Energy (EE) [Database Statistics	s - MJ/Kg	
Main Material Timber	No. Records	Average EE 9.36	Standard Deviation 8.19	Minimum EE 0.30	Maximum EE 61.26	Comments on the Database Statistics:
Timber, General	63	7.75	4.81	0.72	21.30	
Unspecified Virgin	38 25	6.78 9.29	<u>3.58</u> 6.07		14.85 21.30	
Timber, Hardboard	12	21.54	15.84	3.43	61.26	
Predominantly Recycled Unspecified	1	3.43 17.85	3.43			
, Virgin	3	37.42	22.68	16.12	61.26	
Timber, Hardwood Predominantly Recycled	12	4.59 0.33	4.47	0.33	16.00	
Unspecified	10	5.15	4.68	0.50		
Virgin Timber, MDF	4	3.30 11.02	3.30	3.30 8.96	- 11.90	
Unspecified	3	10.72	1.55	8.96	11.90	None
Virgin Timber, Particle Board	23	11.90 12.48	<u> </u>	2.00	- 36.29	·
50% Recycled	23	5.10	5.10			
Other Specification	1	10.22	10.22		-	
Unspecified Virgin	16 5	<u> </u>	<u>9.41</u> 13.35			
Timber, Plywood	12	13.58	6.34	7.58	27.60	
Unspecified Virgin	75	14.33 12.53	4.92			
Timber, Softwood	33	5.55	3.26	0.30	13.00	
Unspecified	24	5.42	3.43		13.00	
Virgin Timber, Woodwool	9	5.88 11.98	2.92	2.80 5.13	9.70	
Unspecified	3	11.98	7.50			
		Selected Em	bodied Energy & C	arbon Values and	Associated Data	
	Freeha dia di Francesso	Embedied Carbon Kr		Best	EE Range - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General	8.5	0.46	Cradia to Cata	High ra	nge, perhaps +/- 40%	Estimated from UK consumption of timb products in 2004
Glue Laminated timber	12	0.65 (?)	Cradle to Gate	8	14	Unknown embodied carbon
Hardboard	16	0.86		15	35	
Laminated Veneer Lumber	9.5	0.51 (?)	Cradle to Gate	-	-	Ref 126
MDF	11	0.59		Not enough data for a	accurate range. Estimated range +/- 30%	AUS & NZ data, only two data points
Particle Board	9.5	0.51		4	15	Very large data range, difficult to select be value
Plywood	15	0.81		10	20	Highly dependent upon the distance travelle
Sawn Hardwood	7.8	0.47	Cradle to Gate	0.72	16	which explains the incredible range. T selected values represent typical UK timber, th
Sawn Softwood	7.4	0.45		0.72	13	were selected giving high preference to valu from UK sources
Veneer Particleboard (Furniture)	23	1.24			(+/- 40%)	
Comments	sequestration. The i The following extract against taking seque particular material. T is deemed renewable Renewability does no clearly much greater anthropogenic CO2 r natural seeding. it th Finally, it seems a s Methane, like CO2 is animals, coal mining,	was taken from A. Amato "A co stered CO2 into consideration. The deduction of a CO2 value size and is surely only appropriate of automatically confer the attribu- quantities of timber are being of resultant from the world's use of perefore appears that the seque somewhat dubious practice to of a greenhouse gas, but it is est gas pipe leakage and offshore	stered carbon is a compl omparative environmenta In measuring embodied equestered by the mater when a world wide stea bute of sustainability to a consumed than are being f its timber resource, mo istered CO2 argument is credit timber benefit of se imated as being 24 times oil and gas operations.	ex argument. The folic al appraisal of alternation (CO2, what is being so rial during its manufactu dy state has been achi material. If we consid- greplenished at presen re is being released int only applicable where equestered CO2 without s more potent than can Methane is produces a	owing extract highlights some of the ve framing systems for offices" 1996 ought is the CO2 burden to society w ure from the total embodied CO2 bu eved between consumption and pro fer the world resource of timber and at, most being consumed as fuel in the to the atmosphere than is fixed by the a steady state has been achieved. It taking into account the methane e bon dioxide as stated previously. It as timber bio-degrades in landfill site	5, Reference 1: "There are counter arguments which consequent upon society's use of a rden is not appropriate just because a material duction, i.e. it has achieved sustainability. its consumption as a complete system, then hird world countries. Thus, in terms of the renewal of timber in new plantations and by missions resultant from the disposal of timber. is emitted in the UK, mainly from landfill waste,

because of the importance of methane, which is considered outside the scope of this study. Furthermore it would be inappropriate to include carbon sequestration without considering the end of life of timber, which may or may not result in the release of methane. For the reasons highlighted above and the scope of this study the author chose to exclude the effects of carbon sequestration, this leaves it open for the user to decide if the effects of carbon sequestration should be included or excluded.


		Material Pr	rofile: Timber		
Materi	ial Scatter Graph			Fuel Split & Embodie	d Carbon Data
EE Scatt	ter Graph - Timber		Energy source	% of Embodied Energy from energy source	% of embodied carbon from source
70.00			Coal	0.0%	0.0%
			LPG	0.0%	0.0%
			Oil	72.8%	76.0%
			-		
60.00 - 5 0.00 - 4 0.00 - 5	•		Natural gas	3.0%	2.3%
<u> </u>	· · · · ·		Electricity	24.2%	21.7%
b 20.00 - b 10.00 - c 10.00 -			Other	0.0%	0.0%
			Total	100.0%	100.0%
0.00 1965 1970 1975 1980	1985 1990 1995 2000 2 Year of Data	2005 2010	The above fuel mix i		m the UK industrial typical fuel use. The be ted due to the large difference in fuel mix.
			Energy source	% of Embodied Energy from energy source	% of embodied carbon from source
			Coal	0.0%	0.0%
			LPG	0.0%	0.0%
			Oil	19.3%	22.9%
			Natural gas	28.5%	24.5%
			Electricity Other	52.2% 0.0%	52.6%
			Total		100.0%
		Material Prone	rties (CIBSE Data)	<u> </u>	
		Thermal conductivity			
Material	Condition	(W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)
, pine Irdwood (unspecified)		0.12			1.70503E
rawood (unspecified)	Dry	0.05			1.97707E
		0.23			1.29179E 1.52926E
aple, oak and similar hardwoods		0.16		1260	1.76367E
k, radial		0.19	700		1.13568E
k, beech, ash, walnut	Moist	0.23	3 650	3050	1.16015E
eranti	Dry	0.17	650	2120	1.23367E
ie, pitch pine	Dry	0.17			1.23367E
	Moist	0.23			1.16015E
l fir, Oregon fir	Dry	0.14		2280	1.18084E
	Moist	0.17			9.503588
sinous woods (spruce, sylvester pine)	Dry	0.12			1.20434E
twood		0.12			1.70503E 7.47642E
		0.14			1.35397E
nber	At 50'C	0.072			8.92857E
	At 50°C	0.14			1.15741E
nber flooring		0.14	4 650	1200	1.794876
low, North Canadian gaboon		0.12			1.190488
low, birch, soft beech		0.14			1.18084E
ood derivatives:	Moist	0.17			9.503588
lulosic insulation, loose fill	At 50°C	0.042			7.07786E
ipboard ipboard, bonded with PF	Dry	0.067		2340	1.23662E
ווידטימות, טטועכע שונו דד	Moist	0.12			7.88955E 7.66166E
ipboard, bonded with UF	Dry	0.12			7.66166E 8.42815E
	Moist	0.12			7.90489E
ipboard, bonded with	Dry	0.12			8.42815E
elamine	Moist	0.25			7.90489E
ipboard, perforated	At 50°C	0.066		1260	1.4966
oring blocks		0.14			1.79487E
rdboard		0.00			6.66667E
	1	0.12	2 880	1340	1.01764E

		0.12	880	1340	1.01764E-07
		0.29	1000	1680	1.72619E-07
multiplex, beech	Dry	0.15	650	2300	1.00334E-07
multiplex, North Canadian gaboon	Dry	0.12	450	2300	1.15942E-07
multiplex, red fir	Dry	0.13	550	2300	1.02767E-07
	Moist	0.21	550	2300	1.66008E-07
particle board		0.098	750	1300	1.00513E-07
		0.17	1000	1300	1.30769E-07
		0.12	800	1300	1.15385E-07
plywood		0.12	540	1210	1.83655E-07
		0.15	700	1420	1.50905E-07

			Materia	al Profile: Tin		
	1	E	mbodied Energy (EE	i) Database Statist	ics - MJ/Kg	l
lain Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments on the Database Statistics:
in Tin, General	12 12	84.44 84.44	87.83 87.83	19.17 19.17	284.30 284.30	
ther Specification	12	36.11		-		None
edominantly Recycle		20.85				
nspecified	2	<u>33.50</u> 111.16				
<i>g</i>			Embodied Energy &			И
	Embodied Energy -	Embodied Carbon - Kg		Best	EE Range - MJ/Kg	
Material	MJ/Kg	CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
Tin Coated (Steel)	19.2 to 54.7	1.03 to 2.93	Cradle to Gate	-	-	-
Tin	250	13.7	Cradle to Gate	19.5	55.5	lack of modern data, large range of data
		Il Scatter Graph		Energy source	Fuel Split & Embodi % of Embodied Energy from energy source	% of embodied carbon from energy sourc
300.00				Coal	7.6%	11.7%
		•		LPG	0.0%	0.0%
250.00 -				Oil	4.5%	5.3%
· () 200.00 -		•		Natural gas	44.3%	38.5%
<u>6</u> 150.00		•		Electricity	43.6%	44.5%
				Other	0.0%	0.0%
100.00 -				Total		100.0%
ен 100.00 - рода 50.00 - ща	• •	•	•		died Carbon Comments:	
0.00	1965 1970 19	75 1980 1985 1990 Year of Data	1995 2000	The fuel split was tak	en from the typical UK fuel use in Uk Historical embodied cark	
				150 butied carbon 100 100 100 100 100 100 100 100 100 10	died carbon contributions per & Tin 0.00 0.00 0.00 0.00	r unit energy use for Lead, Zinc
					0.00 -	
						5 1996 1997 1998 1999 2000 2001 2002 2003 Year
					ar 🖬 Manufactured fuel 1 🔲 LPG 🗋 Gas	s oil ■ Fuel oil ■ Natural gas ■ Electricity
			Material Prop	perties (CIBSE Dat	a)	
Mate	erial	Condition	Thermal conductivity (W-m-1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)	Thermal Diffusivity (M^2 S-1)


			Mater	ial Profile: Titanium		
Main MaterialNo. RecordsAverage EEStandTitanium5470.67Titanium, General5470.67redominantly Recycled1257.84Unspecified1361.00Virgin3578.17	Embodied Energ	y (EE) Database Statistics	· MJ/Kg			
Main Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comm
	ų.		188.43	257.84	744.70	
	5		188.43	257.84	744.70	
	1		257.84			-
	3		<u>361.00</u> 158.15		744.7	- '0
	·	Se	elected Embodied Ene	rgy & Carbon Values and A	ssociated Data	
	Embodied Energy	Embodied Carbon Ka		Best EE Ra	ange - MJ/Kg	
Material	Embodied Energy - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	
General Primary Titanium	361 to 745	?	Cradle to Gate	-	-	
General Recycled Titanium	258	?		Not end	bugh data	
Comments				building material, with very lin rden of primary material prod		

© University of Bath 2008

ments on the Database Statistics:
Very limited data
Specific Comments
-
-
ings. However, unlike aluminium it does not nium have very high embodied energy.
on Data

				Material Pr	ofile: Vinyl Flooring		
			II	Embodied Energy (I	EE) Database Statistics - MJ/	Kg	
lain Material	No. Records	Average EE	Standard Deviation	Minimum EE	Maximum EE	Comments	on the Database Statistics:
/inyl	10	53.69	34.82	11.80	120.00	Care needs to be taken when looking a	at these statistics due to feedstock energy. It is or
Vinyl, General	10	53.69	34.82	11.80		apparent when examining the (separate) or excluded, sometimes it is not known an	database records whether feedstock energy is included assumptions need to be made.
Unspecified	10	53.69	34.82	11.80	120.00		
	·		Selected	d Embodied Energy	& Carbon Values and Assoc	iated Data	N
		Feedstock			Best EE	Range - MJ/Kg	_
Material	Embodied Energy - MJ/Kg	Energy (Included) - MJ/Kg	Embodied Carbon - Kg CO2/Kg	Boundaries	Low EE	High EE	Specific Comments
General Vinyl Flooring	65.64	23.58	2.29	Cradle to Gate	11.8	96	Same value as PVC calendered sheet, this value is agreement with the other values in the database f vinyl flooring.
Vinyl Composite Tiles (VCT)	13.7	?	?	Cradle to Grave	Not enough da	ata to specify a range.	Reference 77
			s data is stored within the I			Fuel Split & Embodied Car	ph alone to determine which include and which
		ock energy. This	s data is stored within the IG		Energy source		
		ock energy. This	s data is stored within the IG			Fuel Split & Embodied Car % of Embodied Energy from energy	rbon Data
140.00 -		ock energy. This	s data is stored within the IG		Energy source	Fuel Split & Embodied Car % of Embodied Energy from energy source	rbon Data % of embodied carbon from source
140.00		ock energy. This	s data is stored within the IG		Energy source Electricity	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8%	rbon Data % of embodied carbon from source 39.3%
140.00 120.00 -		ock energy. This	s data is stored within the IG		Energy source Electricity Oil fuels	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1%	rbon Data % of embodied carbon from source 39.3% 19.8%
140.00 120.00 - 100.00 -		ock energy. This	s data is stored within the IG		Energy source Electricity Oil fuels Other Fuels	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1% 100.0%	rbon Data % of embodied carbon from source 39.3% 19.8% 40.9%
140.00 120.00 - 100.00 -		EE Scatter Grap	s data is stored within the IG		Energy source Electricity Oil fuels Other Fuels Total Fuel Split & Embodied Carbon	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1% 100.0% Comments:	rbon Data % of embodied carbon from source 39.3% 19.8% 40.9% 100.0%
140.00 120.00 - 120.00 - 100.00 - 80.00 - 80.00 - 40.00 - 20.00 - 0.00 -	exclude feedsto	EE Scatter Grap	s data is stored within the IG er Graph oh - Vinyl 998 2000 2002 of Data	CE-Database.	Energy source Electricity Oil fuels Other Fuels Total Fuel Split & Embodied Carbon	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1% 100.0% Comments:	rbon Data % of embodied carbon from source 39.3% 19.8% 40.9%
140.00 120.00 - 120.00 - 100.00 - 80.00 - 40.00 - 20.00 - 0.00 -	exclude feedsto	EE Scatter Grap	s data is stored within the IG er Graph oh - Vinyl • 998 2000 2002	CE-Database.	Energy source Electricity Oil fuels Other Fuels Total Fuel Split & Embodied Carbon The energy split was specified in the classified under 'other' fuels was not coperties (CIBSE Data)	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1% 100.0% Comments:	rbon Data % of embodied carbon from source 39.3% 19.8% 40.9% 100.0%

EE) Database Statistics - MJ/	/Kg					
Maximum EE	Comments on the Database Statistics:					
120.00 120.00	Care needs to be taken when looking at these statistics due to feedstock energy. It is apparent when examining the (separate) database records whether feedstock energy is inclu or excluded, sometimes it is not known and assumptions need to be made.					
120.00	istad Data	· · · · · · · · · · · · · · · · · · ·				
& Carbon Values and Assoc	E Range - MJ/Kg	1				
Low EE	High EE	Specific Comments				
11.8	96	Same value as PVC calendered sheet, this value is in agreement with the other values in the database fo vinyl flooring.				
Not enough d	lata to specify a range.	Reference 77				
	Fuel Split & Embodied Car	rbon Data				
Energy source	Fuel Split & Embodied Car % of Embodied Energy from energy source	rbon Data % of embodied carbon from source				
Energy source Electricity	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8%	rbon Data % of embodied carbon from source 39.3%				
Energy source Electricity Oil fuels	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1%	rbon Data % of embodied carbon from source 39.3% 19.8%				
Energy source Electricity	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1%	rbon Data % of embodied carbon from source 39.3%				
Energy source Electricity Oil fuels Other Fuels	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1% 100.0%	rbon Data % of embodied carbon from source 39.3% 19.8% 40.9%				
Energy source Electricity Oil fuels Other Fuels Total Fuel Split & Embodied Carbor The energy split was specified in t classified under 'other' fuels was r	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1% 100.0% Comments:	rbon Data % of embodied carbon from source 39.3% 19.8% 40.9% 100.0%				
Energy source Electricity Oil fuels Other Fuels Total Fuel Split & Embodied Carbor The energy split was specified in the	Fuel Split & Embodied Car % of Embodied Energy from energy source 41.8% 15.1% 43.1% 100.0% Comments:	% of embodied carbon from source 39.3% 19.8% 40.9%				

Material Properties (CIBSE Data)							
Material	Condition	Thermal conductivity (W-m- 1 K-1)	Density (kg m -3)	Specific heat (J kg-1 K-1)			
vinyl floor covering		0.19	1200	1470			

Secondary Zinc 72 3.80 Crade to Cate 57 87 Manary Zinc 72 3.80 Crade to Cate 57 87 Comments None Fuel Split & Embodied Carbon Data Fuel Split & Embodied Carbon Data Material Scatter Graph Fuel Split & Embodied Carbon Data Fuel Split & Embodied Carbon Data EE Secter Graph Fuel Split & Embodied Carbon Data Fuel Split & Embodied Carbon Data Material Scatter Graph EE Secter Graph Fuel Split & Embodied Carbon Data Upget 4 75 0.0% 0.0% Material Scatter Graph Fuel Split & Embodied Carbon Data Fuel Split & Embodied Carbon Data Upget 4 Fuel Split & Embodied Carbon Data Fuel Split & Embodied Carbon Data Upget 4 Fuel Split & Embodied Carbon Data Fuel Split & Embodied Carbon Data Upget 4 Fuel Split & Embodied Carbon Data Fuel Split & Embodied Carbon Comments: Total Total 100.0% 10.0% Upget 4 Fuel Split & Embodied Carbon Comments: The feel split was taken from the typical Uk to the use in UK sin industry. Upget 4 Fuel Split & Embodied Carbon Comments: The feel split was taken from the typical Uk to the use in UK sin				Materia	al Profile: Zinc		
Image: Name of the state of the st				Embodied Energy (E	E) Database Statis	tics - MJ/Kg	
Zero count 29.9 0.0.00 20.90 0.0.0 0.0.0 Material count 6 47.55 15.00							Comments on the Database Statistics:
Wgph 20 7.2.41 1.513 4.000 100.780 Selected Endorg V MMrg Enbodied Energy V COVINg Enbodied Energy V COVINg Enbodied Energy V COVINg Enbodied Energy V COVINg Enbodied Carbon - Kg COVINg Boundaries Beart E Earge - M.Mrg Areporting rate of 19% has been applied (or environmentagency) Primary Zinc 9 0.48 0.48 57 0.5 47 4 5 5 7	Zinc, General Market Average Predominantly Recycled	39 1 4	59.80 29.10 9.26	25.16 29.10 0.91	8.46 29.10 8.46	105.76 - 10.57	None
Material Embodied Energy (200%) Embodied Carbon - Kg (200%) Boundaries Beet Ef Range - MJKg (4 - 30%) A recording range of 15% has been applied (6 environment space) Primary Zinc 7.2 3.06 Cradiu to Gato 57 67 7 Secondary Zinc 9 0.46 7.5 10.5 7 10.5 Comments None 7.5 10.5 7 10.5 10.5 Comments None EE Statter Graph - Zinc % of embodied Carbon Data 11.7% Upg 0.00000000000000000000000000000000000							
Material Enclosed Carbon Ag OCCOMP Boundaries Low EE High EE Specific Comments General Zinc 0.1.9 0.3.1 (+2.00%) A. mopting table of 10%, has been ageled of performance specific Primary Zinc 7.2 0.8.6 Credio to Gate 5.7 0.7 Secondary Zinc 9 0.4.6 7.5 10.5 10.5 Comments None Fuel Split & Embodied Carbon Data Entropy source in entropy source in the one source in entropy source in the one		· · · · · · · · · · · · · · · · · · ·	Selecte	ed Embodied Energy	& Carbon Values a	nd Associated Data	
Mathin MJKQ CO2KQ Buildance Low EE High EE adjoint Columbiants General Zine 0.0 3.31 (r.5.30%) A moving rate of 18% has been accided (accontent rate of 18% has been accide accon		Fuch a dia d Fu annu	Freehadied Carbon Ke		Best	EE Range - MJ/Kg	
Output Or 3 Output Output Privacy Zinc 72 3.86 Oracle to Gale 57 87 Secondary Zinc 9 0.48 Crade to Gale 57 87 Comments None None Fuel Spit & Embodied Carbon Data Material Scatter Graph Fuel Spit & Embodied Carbon Data Energy source % of Embodied Energy from energy source % of embodied carbon from source energy source 0000 000 4.3% 0.35% Energy source % of Embodied Carbon Data 0000 000 4.3% 0.35% Energy source % of Embodied Carbon Data 0000 000 4.3% 0.35% Energy source % of Embodied Carbon Comments: 12000 000 0.0% 0.0% 0.0% 0.0% 0000 0.0% 0.0% 0.0% 0.0% 0.0% 0000 0.0% 0.0% 0.0% 0.0% 0.0% 0000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% <td>Material</td> <td></td> <td>-</td> <td>Boundaries</td> <td>Low EE</td> <td>High EE</td> <td>Specific Comments</td>	Material		-	Boundaries	Low EE	High EE	Specific Comments
Secondary Znc 9 0.48 7.5 10.5 Comments None Material Scatter Graph Fuel Split & Embodied Carbon Date Effective Graph - Znc Fuel Split & Embodied Carbon Date Effective Graph - Znc for embodied carbon (from source Coard - Znc) Description Secondary 2nc % of embodied Carbon Date Effective Graph - Znc for embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard - Znc) % of embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard - Znc) % of embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard - Znc) % of embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard - Znc) % of embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard - Znc) % of embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard - Znc) % of embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard - Znc) % of embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard - Znc) % of embodied Carbon (from source Coard - Znc) Description % of embodied Carbon (from source Coard	General Zinc	61.9	3.31			(+/- 30%)	A recycling rate of 16% has been applied (source: the environment agency)
Comments None Material Scatter Graph Fuel Split & Embodied Carbon Data Image source Finary source % of embodied Carbon Data Image source 1000% 0.0% 0.0% Image source 7.6% 11.7% 0.0% Image source 7.6% 11.7% 0.0% Image source 7.6% 0.0% 0.0% Image source 4.4.3% 0.0% 0.0% Image source 4.4.3% 0.0% 0.0% Image source 4.4.3% 0.0% 0.0% Image source 100.0% 100.0% 100.0% 100.0% Image source Image source 100.0% 100.0% 100.0% Image source Image source Image source Image source Image source Image source Image source Image source Image sou	Primary Zinc	72	3.86	Cradle to Gate	57	87	
Matrial Scatter Graph Fuel Split & Embodied Carbon Data Image: Scatter Graph - Zine of the scatter Graph - Zine - Zine	Secondary Zinc	9	0.48		7.5	10.5	
Image: Control open and the second]	Energy source	% of Embodied Energy from	
12000 1900 1900 1900 1900 1900 1900 1900		EE Scat	ter Graph - Zinc		Energy source		% of embodied carbon from source
Image: state of the state		•					
Image: static	100.00 -						
Image: state of the second		• •					
40.00 9 0.00% 0.0% 196 1970 1975 1980 1985 2000 2005 2010 Image: Strength of the strengt of the strength of the strength of the stre	1) 1		•• • • • •				
g 20.00/01/01 1985 1980 1985 1980 1985 2000 2005 2010 Total 100.0% 100.0% 100.0% Image: State of Data		•	* * * *	• •			
0.00 1965 1970 1975 1980 1985 2000 2005 2010 The fuel split was taken from the typical UK fuel use in UK zinc industry. Historical embodied carbon per unit fuel use Image: Split was taken from the typical UK fuel use in UK zinc industry. Historical embodied carbon per unit fuel use Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry. Image: Split was taken from the typical UK fuel use in UK zinc industry.<				• •			
1965 1970 1975 1980 1985 1990 2000 2005 2010 The fuel split was taken from the typical UK fuel use in UK zinc industry. Historical embodied carbon per unit fuel use Impose taken from the typical UK fuel use in UK zinc industry. Historical embodied carbon contributions per unit energy use for Lead, Zinc & Tin 1000 <td></td> <td>• •</td> <td>•</td> <td></td> <td></td> <td></td> <td></td>		• •	•				
Material Condition Thermal conductivity Descript (form, 2) Specific heat (J, br, 1, K, 1) Thermal Diffusivity (M02.8.1)		0 1975 1980		00 2005 2010	The fuel split was take		-
Material Condition Thermal conductivity Density (kg m 2) Specific heat (Lkg 1 K 1) Thermal Diffusivity (MA2 S 1)					Embodied carbon contribution per unit energy use 1990 =100 index	120.00 100.00 80.00 60.00 40.00 20.00 1990 1991 1992 1993 1994	A Tin
				Material Pro	operties (CIBSE Da	ta)	
		I		(W-m-1 K-1)			

REFERENCES						
Ref No.	Title	Author	Year	Organisation/Publisher	ISBN	
1	A comparative Environmental Life Cycle Assessment of Modern Office Buildings	K J Eaton & A Amato	1998	The Steel Construction Institute	1859420583	
2	A comparative LCA of building insulation products made of stone wool, paper wool and flax	Anders Schmidt, Allan Jensen et al.	2004	International Journal of LCA		
3	A Comparison of the Embodied and operational Environmental impacts of insulation in Office Buildings	Mark Lucuik	2005	10th Canadian Conference on Building Science and Technology, Ottawa, May 2005		
4	A decision making matrix with life cycle perspective of materials for roofs in Sri Lanka	U G Yasantha Abeysundra, Sandhya Babel, Shabbir Gheewala	2006	Materials and Design 2006, article in press, doi:10.1016/j.matdes.2006.09.011		
5	A life cycle analysis of the environmental impacts of asphalt and concrete roads	Gianni Pontarollo & Tim Smith	2001	IRF world road congress 2001		
6	A life cycle assessment and evaluation of construction and demolition waste	Amelia Craighill & Jane Powell	1999	The Centre for Social and Economic Research on the Global Environment (CSERGE)		
7	A material flow analysis and an ecological footprint of the southeast region, chapter 3	John Barrett et al	2002	Taking stock, Biffaward		
8	Acrylonitrile-Butadiene-Styrene Copolymer (ABS) LCI Data Summary	I Boustead	2002	APME, Association of Plastics Manufacturers in Europe		
9	Acrylonitrile-Butadiene-Styrene Copolymer (ABS) LCI Data Summary in Excel Format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
10	Aluminium applications and society, paper 1 automotive, expanded summary	International primary aluminium institute	2000	International primary aluminium institute		
11	An ecological assessment of the vernacular architecture and of its embodied energy in Yunnan, China	Wang Renping, Cai Zhenyu	2006	Building and environment 41, 2006, pg 687-697		
12	An energy life cycle assessment model for building design	Jorn Dinesen & Steen Traberg-Borup	1994	Danish Building research institute (SBI). Proceedings of the CIB conference on		
			0000	buildings and the environment.		
13	An environmental comparison of bridge forms Assessing the environmental impact of metal production processes	D Collings T E norgate, S Jahanshahi, W J Rankin	2006 2006	Bridge Engineering, 159, December 2006, Issue BE4, Pg 163-168 Journal of Cleaner Production 15, 2007, Pg 838-848		
14	Assessment of the automotive assembly paint process for energy, environmental and economic	Geoffrey J Roelant, Amber J Kemppainen and david R	2006			
15	improvement	Shonnard	2004	Journal of Industrial Ecology, Volume 8, Number 1-2		
16	Assessment of the decrease of CO2 emissions in the construction field through the selection of materials: Practical case study of three houses of low environmental impact	Maria Jesus Gonzalez, Justo Garcia Navarro	2005	Building And Environment; Article in press		
17	Australian LCA data - SimaPro Data	RMIT Uni, Victoria University Australia	1998	RMIT Uni, Victoria University Australia		
18	Background document for life cycle greenhouse gas emission factors for carpet and personal computers	US environment Protection Agency	2003	US environment Protection Agency		
19	Background Document for Life-Cycle Greenhouse Gas Emission Factors for Carpet and Personal Computers	US environmental protection agency	2003	US environmental protection agency		
20	Best Available Techniques for the Cement Industry	Cembureau	1999	cembureau		
21	Birth to death analysis of the energy payback ratio and CO2 gas emission rates from coal, fission, wind and DT-fusion electrical power plants	Scott W White and Gerald L Kulcinski	2000	Fusion engineering and design 48, 2000, Pg 473-481		
22		Bill Lawson	1996	The Royal Australian Institute of Architects	186318023	
23	Building Research Establishment (BRE) environmental profiles - Clay tiles	Building Research Establishment (BRE)	1996	Building Research Establishment (BRE)	100310023	
24	Building Research Establishment (BRE) Environmental profiles - Glass wool	Building Research Establishment (BRE)	1999	Building Research Establishment (BRE)		
25	Building Research Establishment (BRE) environmental profiles - UK kiln dried timber (softwood)	Building Research Establishment (BRE)	1996	Building Research Establishment (BRE)		
26	Building the Environmental Performance of UK Forest Products into Construction	J S Mundy and P W Bonfield	2000	BRE		
27	Bulk polymerised PVC LCI Data Summary	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe		
28	Bulk polymerised PVC LCI Data Summary in Excel	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe		
29	CIBSE Guide A: Environmental Design	Chartered institute of Building Service Engineers (CIBSE)	2006	Chartered institute of Building Service Engineers (CIBSE)	190328766	
30	Closing Carbon Cycles, Chapter 4 - Gross energy requirements (GER) and gross CO2 emissions for	Martin Patel, E Jochem	1999	Utrecht university, The Netherlands		
31	products of the organic chemical industry CO2 emissions of the Swedish steel industry	Hans Sandberg, Rune Lagneborg et al	2001	Scandinavian Journal of Metallurgy		
31	Comparative analysis of available life cycle inventories of cement in the EU	Alejandro Josa, Antonio Aguado, Atte Heino, Ewan Byars	2001	Cement and concrete journal 34 (2004) published by Peragmon, Elsevier		
33	Comparative Analysis of Embodied Energy Rates for Walling Elements in India	and Arnaldo Carmin P S Chani, Najamuddin & S K Kaushik	2003	Journal of the Institution of Engineers (India)		
34	Comparative energy evaluation of plastic products and their alternatives for the building and construction	Franklin Associates	1991	The Society of the plastics industry		
	and transportation industries					
35	Comparative environmental life cycle assessment of composite materials	O M De Vegt & W G Haije Giuseppe M. Nicoletti a, Bruno Notarnicola & Giuseppe	1997	unknown, reference number ECN-I-97-050		
36	Comparative Life Cycle Assessment of Flooring Materials: Ceramic versus Marble Tile	Tassielli	2000	Journal of Cleaner Production; 10, 2002, pg 283-296		
37	Comparing energy use and environmental emissions of reinforced wood doors and steel doors	Lynn knight, Melissa Huff, Janet I Stockhausen & Robert J Ross	2005	Forest Products Journal, June 2005, Vol 55, No 6		
38	Comparison of environmental impacts of two residential heating systems	Lijun Yang, Radu Zmeureanu & Huges Rivard	2007	Article in Press, Building and Environment, doi:10.1016/j.buildenv.2007.02.007		
39	Concrete building blocks made with recycled demolition aggregate	M N Soutsos, S G Millard, J H Bungey	2006	Concrete Plant International, August 2006		
40	Concrete with Ceramic Waste Aggregate	R M Senthamarai and P Devadas Manoharan	2005	Cement & Concrete Composites		
41	Confederation of paper industries web address: http://www.paper.org.uk/	Confederation of paper industries	2005	Confederation of the paper industries		
42	Conservation of energy and natural resources by recycling building waste	C Thormark	2001	Resources Conservation & Recycling		
43	Conversion processes for polyolefin's	I Boustead	2003	APME, Association of Plastics Manufacturers in Europe		
44	Copper Environmental Profile	Kennecott Utah Copper Corporation	2004	Kennecott Utah Copper Corporation		
45	Data needed for environmental assessment of building projects	Hanne Krogh and klaus Hansen	1994	Danish Building research institute (SBI). Proceedings of the CIB conference on buildings and the environment.		

	REFERENCES						
Ref No.	Title	Author	Year	Organisation/Publisher	ISBN		
46	Defining and Improving Environmental Performance in the Concrete Industry	D Higgins, L Parrott & L Sear	2000	DETR & UK Concrete Alliance	4		
47	ECFA Environmental Declaration Plasticising Admixtures	ECFA - European Federation of Concrete Admixture	2006	ECFA - European Federation of Concrete Admixture Association			
48	Ecohouse 2: A Design Guide	Association Sue Roaf, Manuel Fuentes & Stephanie Thomas	2003	Architectural Press (Elsevier)	750657340		
49	Ecology of Building Materials	Bjorn Berge	2000	Architectural press	750633948		
50	ECO-Profiles of the European Plastics Industry, Methodology	I Boustead	2003	APME, Association of Plastics Manufacturers in Europe			
51	EEE: A prototype tool for the evaluation of embodied energy and greenhouse gas emissions of exterior envelope of Canadian houses	Rym Baouendi, Radu Zmeureanu, Brian Bradley & Avi Friedman	2002	Centre for Building Studies, Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, Canada			
52	Embodied energy - detailed methodology	Tim Grant at the Centre for Design at RMIT	2001	Centre for Design RMIT University Australia			
53	Embodied energy analysis of New Zealand building materials	Alcorn and Baird	1996	Embodied Energy - The Current State of Play, Deakin University, Nov 1996			
54	Embodied energy and carbon dioxide emissions for building materials	John West, Carol Atkinson & Nigel Howard	1994	Proceedings of the CIB conference on buildings and the environment, BRE			
55	Embodied Energy and CO2 Coefficients for NZ Building Materials	Andrew Alcorn	2003	Centre for Building Performance Research, Victoria University of Wellington			
56	Embodied Energy and CO2 Emissions of Wood and Concrete Framed Buildings in Sweden	L Gustavsson & R Sathre	2004	Ecotechnology, Mid-Sweden university			
57	Embodied Energy Coefficients of Building Materials	Andrew Alcorn	1996	Centre for Building Performance Research, Victoria University of Wellington			
58	Embodied energy in buildings: Wood versus concrete - reply to Borjesson and Gustavsson	M Lenzen and G Treloar	2002	Energy Policy 30, 2002, 249-255			
59	Embodied energy of common and alternative building materials and technologies	B V Venkaarama Reddy & K S Jagadish	2001	Energy and buildings, Elsevier	000050004		
<u>60</u> 61	Energy Analysis Energy and environmental impact analysis of double-glazed windows	Edited by John A G Thomas G Weir and T Muneer	1977 1996	IPC science Press Technology Napier university	902852604		
62	Energy consumption and associated greenhouse gas emissions related to maintenance of a residential structure	Paul Winistorfer & Zhangjing Chen	2004	CORRIM			
63	Energy consumption of asphalt and reinforced concrete pavement materials and construction	Pablo Zapata & John Gambatese	2005	Journal of infrastructure systems, March 2005			
64	Energy Performance of buildings	George Baird, Michael R Donn	1984	CRC Press Inc.	849351863		
65	Energy use during the life cycle of buildings: a method	K Adalberth	1997	Building and environment, Vol 32, No. 4, pg 317-320			
66	Environmental assessment of bio-based polymers and natural fibres	Martin Patel, Catia Bastioli et al	2003	Unknown			
67	Environmental Assessment of Brick Production in Greece	Christopher Koroneos & Aris Dompros	2006	Building and Environment 42, 2007, Pg 2114-2123			
68	Environmental Benefits of Recycling - An international Review of Life Cycle Comparisons for Key Material in the UK Recycling Sector	WRAP - Waste Resources Action Programme	2006	WRAP - Waste Resources Action Programme			
69	Environmental burdens of concrete and concrete products	Sirje Vares & Tarja Häkkinen	1998	Technical Research Centre of Finland, VTT Building Technology			
70 71	Environmental impact of building and construction materials, Volume B: Mineral products Environmental impact of building and construction materials, Volume C: Metals	R Clough and R Martyn N Howard	1995 1995	CIRIA, Construction Industry Research and Information Association CIRIA, Construction Industry Research and Information Association	860178129 860178137		
72	Environmental impact of building and construction materials, Volume C. Metals Environmental impact of building and construction materials, Volume D: Plastics and elastomers	R Clough and R Martyn	1995	CIRIA, Construction Industry Research and Information Association	860178145		
73	Environmental impact of building and construction materials, Volume E: Trastics and clastomers Environmental impact of building and construction materials, Volume E: Timber and timber products	J Newton and R Venables	1995	CIRIA, Construction Industry Research and Information Association	860178153		
74	Environmental impact of building and construction materials, Volume F: Paints and coatings, adhesives and sealants	R Bradley, A Griffiths and M Levitt	1995	CIRIA, Construction Industry Research and Information Association	860178161		
75	Environmental LCI data for Rockwool Rollbatt	Price Waterhouse Coopers, PWC	2003	Price Waterhouse Coopers, PWC			
76	Environmental Performance Evaluation of Thermal Insulation Materials and its Impact on the Building	A M Papadopoulos & E Giama	2006	Building and Environment, Article in Press, doi:10.1016/j.buildenv.2006.04.012			
77	Environmental Resource guide	Joseph A Demkin	1997	AIA, American institute of Architects	471140430		
78	Environmental, economic and social analysis of materials for doors and windows in Sri Lanka	U G Yasantha Abeysundra, Sandhya Babel, Shabbir Gheewala & Alice Sharp	2006	Building and Environment 42, 2007, Pg 2141-2149			
79	Epoxy resin LCI Data Summary	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe			
80	Epoxy resin LCI Data Summary in excel format	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe			
81	Estimating the embodied energy of timber building products	Stephen Pullen	2000	Journal of the institute of Wood Science, Vol 15 No.3, 2000			
82	European Database for Corrugated Board Life Cycle Studies	FEFCO European Federation of Corrugated Board Manufacturers, & GEO & ECO	2006	FEFCO European Federation of Corrugated Board Manufacturers, & GEO & ECO			
83	Evaluate the whole life environmental impact of glass in a fully glazed commercial building	Mohamed R Kiani, Andrew Miller et al	2005	University of Brighton			
<u>84</u> 85	Evaluation of building environmental impacts: Two case studies Evaluation of CO2 payback time of power plants by LCA	Stephen Carpenter & John Kokko K Tahara, T Kojima, A Inaba	1996 1997	ASHRAE transactions Energy conservation and management, Vol 38			
85	Gate to Gate Life Cycle Inventory of Glued-Laminated Timbers Production	Maureen E Puettmann and James B Wilson	2005	Wood and Fibre Science 37, Special CORRIM Issue, 2005, Pg 99-113			
87	Gate to Gate Life Cycle Inventory of I-Joist Production	James B Wilson & Eric R Dancer	2005	Wood and Fibre Science 37, Special CORRIM Issue, 2005, Pg 85-98			
88	Gate to Gate Life Cycle Inventory of Laminated Veneer Lumber Production	James B Wilson & Eric R Dancer	2005	Wood and Fibre Science 37, Special CORRIM Issue, 2005, Pg 114-127			
89	Gate to gate life cycle inventory of softwood lumber production	Michael R Milota, Cynthia D West & Ian D Hartley	2005	Wood and Fibre Science, 37 Corrim Special issue, 2005, Pg 47-57			
90	Gate to Gate Life Cycle inventory of Softwood Plywood Production	James B Wilson and Eric T Sakimoto	2005	Wood and Fibre Science 37, Special CORRIM Issue, 2005, Pg 58-73			
<u>91</u> 92	Gate to Gate Life Cycle Inventory of Oriented Strandboard Production GBC - The green building challenge handbook	D Earl Kline Unknown	2005 1995	Wood and Fibre Science 37, Special CORRIM Issue, 2005, Pg 74-84 http://www.gbc-ziegelhandbuch.org/eng/main.asp?Menu=3			
<u>92</u> 93	Glass Recycling - Life Cycle Carbon Dioxide Emissions	British Glass by Enviros	2003	British Glass by Enviros			
94	Green building Handbook Vol 2: A guide to building products and their impact on the environment	Tom Woolley, Sam Kimmins	2003	E & FN Spon, Taylor & Francis Group	419253807		
	Green Building Handbook: A guide to building products and their impact on the environment	Tom Woolley, Sam Kimmins	1997	E & FN Spon, Thomson Science & Professional	419226907		

	REFERENCES						
Ref No.	Title	Author	Year	Organisation/Publisher	ISBN		
96	Greenhouse Gas Emissions and Costs Over the Life Cycle of Wood and Alternative Flooring Materials	Ann Kristin Petersen and Birger Solberg	2004	Climatic Change 64, 2004, Pg 143-167			
97	Handbook of Industrial Energy Analysis	I Boustead, G F Hancock	1979	Ellis Horwood Limited	853120641		
98	High Density polyethylene LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
99	High Density polyethylene LCI Data Summary in Excel format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
100	High Density polyethylene pipe extrusion LCI Data Summary	I Boustead	2005	Plastic Europe, the former APME			
101	High Density polyethylene pipe extrusion LCI Data Summary in Excel format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
102	High Performance High Volume Fly Ash Concrete for Sustainable Development	P Kumar Mehta	2004	international Workshop on Sustainable Development and Concrete technology, Beijing, China, May 20-21 2004			
103	How Sustainable is Concrete?	Leslie Struble and Jonathan Godfrey	1999	University of Illinois, International workshop on sustainable development and concrete technology			
104	IISF - Stainless steel LCI spreadsheet	IISF - institute of Stainless Steel Forum (ISSF)	2004	IISF - institute of Stainless Steel Forum (ISSF)			
<u>105</u> 106	IISI bar & wire rod BF route IISI bar & wire rod EAF route	IISI - International Iron & Steel Institute IISI - International Iron & Steel Institute	2000 2000	IISI - International Iron & Steel Institute IISI - International Iron & Steel Institute			
106	IISI coated flat steel BF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
107	IISI electrogalvanised coil BF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
109	IISI engineering steel EAF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
110	IISI Finished cold rolled coil BF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
111	IISI Hot dipped galvanised coil BF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
112	IISI Hot rolled coil BF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
113	IISI Plate BF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
114	IISI section BF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
115	IISI section EAF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
116	IISI Steel pipe BF route	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute			
117	Integrated Pollution Prevention and Control (IPPC) - Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries	European Comission, IPPC	2001	European Commission			
118	Integrated Pollution Prevention and Control; Draft reference document on best available techniques in the ceramic manufacturing industry, draft October 2004	European Commission	2004	European Commission			
119	Integrated Pollution Prevention and Control; Draft reference document on best available techniques in the pulp and paper manufacturing industry, December 2001	European Commission	2001	European Commission			
120	Kingspan Therma - An Environmental Profile	Kingspan	2006	Kingspan			
121	LCA and Embodied Energy; Some Contentious Issues	W R Lawson	1996	Embodied Energy - The Current State of Play, Deakin University, Nov 1996			
122	LCA Fact Sheet, Life Cycle Analysis of Clay Brick Housing - Based on a Typical Project Home	The Centre for Sustainable Technology, University of Newcastle, Australia	2003	The Centre for Sustainable Technology, University of Newcastle, Australia			
123	LCA of Road - A pilot study for inventory analysis	Hakan Stripple	2001	IVL Swedish Environmental Research Institute			
124	Life Cycle Analysis of a Residential Home in Michigan	Steven Blanchard and Peter Reppe	1998	Centre for Sustainable Systems, university of Michigan			
125	Life cycle analysis of wind-fuel cell integrated system	F I Kahn, K Hawboldt & M T Iqbal	2005	Renewable Energy, Vol 30, 2005, Pg 157-177			
126	Life Cycle Analysis of Wood Products: Cradle to Gate LCI of Residential Wood Building Materials	Maureen E Puettmann and James B Wilson	2005	Wood and Fibre Science 37, Special CORRIM Issue, 2005, Pg 18-29			
127	Life cycle assessment environmental profile of cotton and polyester-cotton fabrics	Eija M Kalliala & Pertti Nousiainen	1999	AUTEX Research Journal Vol 1, No. 1, 1999			
128	Life Cycle Assessment for Painting Processes: Putting the VOC Issue in Perspective	Ian D Dobson	1995	Progress in Organic Coatings 27, 1996, Pg 55-58			
129	Life Cycle Assessment of 4 Types of Floor Covering	Jose Potting & Korenils Blok	1994	Dept. science, technology and society, Utrecht university			
<u>130</u> 131	Life cycle assessment of a wind farm and related externalities Life Cycle Assessment of Flooring Materials: Case Study	L Schleisner A. Jonsson, A-M, Tillman, T.Svensson	2000 1995	Renewable energy 20, 2000, 279-288 Building and Environment (Journal) Vol 32, No.3, pg 245-255, 1997, Pergamon,			
				Elsevier.			
132	Life Cycle Assessment of Nickel Products Life Cycle Assessment of Particleboards and Fibreboards	Ecobalance for Nickel Industry LCA Group A. Frühwald, J. Hasch	2000	Ecobalance for Nickel Industry LCA Group http://www.oekobilanzen-holz.de/			
133 134	Life Cycle Assessment of Particleboards and Fibreboards Life Cycle Assessment of polyvinyl Chloride and Alternatives: Summary Report for Consultation	A. Frunwald, J. Hasch DEFRA	1999 2001	DEFRA, Web address:			
135	Life Cycle Assessment of PVC and of Principle Competing Materials	Martin Baitz, Johannes Kreissig and Eloise Byrne	2004	http:www.defra.gov.uk/environment/consult/PVC/index2.htm European Commission			
135	Life Cycle Assessment of Road Construction	Ulla-Maija Mroueh, Paula Eskola, Jutta Laine-Ylijoki, Kari Wellman et al	2004	FINNRA - Finnish National Road Administration			
137	Life Cycle Assessment of Wood Floor Coverings	Barbara Nebel, Bernhard Zimmer and Gerd Wegener	2006	International Journal of LCA 11 (3), 2006, Pg 172-182			
138	Life cycle Assessment of Wood Hool Coverings Life cycle CO2 emissions of a photovoltaic/wind/diesel generating system	Y Kemmoku, K Ishikawa, S Nakagawa, T Kawamoto & T Sakakibara	2000	Electrical engineering in Japan, Vol 138, No. 2, 2002			
139	Life Cycle CO2 Emissions of a Photovoltaic/Wind/Diesel Generating System	Yoshishige Kemmoku, Keiko Ishikawa, Shigeyasu Nakagawa, teru Kawamoto	2002	Electrical Engineering in Japan, Vol 1, No 2, 2002			
140	Life cycle energy and environmental performance of a new university building modelling challenges and design implications	Chris Scheuer, Gregory A. Keoleian, Peter Reppe	2003	Energy and buildings 35, pg 1049-1064			
141	Life Cycle Environmental Assessment of Paint Processes	Stella Papasavva, Sheila Kia, Joseph Claya, and Raymond Gunther	2002	Journal of Coatings Technology, Vol. 74, No. 925, February 2002			
4.40	life Cycle Impact Assessment of Printing Paper using Non-Wood Pulp and De-inked Pulp	Katsuhito Nakazawa, Toru Katsura, Keiichi Katayama,	2004	6th International Conference on EcoBalance, Tsukuba, Japan, 25-27 Oct. 2004.			
142	The Cycle impact Assessment of Finning Paper using Non-wood Pulp and De-Inked Pulp	Itaru Yasui	2004				

	REFERENCES						
Ref No.	Title	Author	Year	Organisation/Publisher	ISBN		
144	Life Cycle inventory of Five Products Produced from Polylactide (PLA) and Petroleum Based Resins - Summary Report	Franklin Associates for Athena Institute	2006	Athena Institute International			
145	Life Cycle inventory of Five Products Produced from Polylactide (PLA) and Petroleum Based Resins - Technical Report	Franklin Associates for Athena Institute	2006	Athena Institute International			
146	Life Cycle Inventory of Medium Density Fibreboard	Beatriz Rivela, M Teresa Moreira and Gumersindo Feijoo	2007	Int J LCA 12 (3) 143 – 150 (2007)			
147	Life Cycle Inventory of Particleboard: A Case Study in the Wood Sector	Beatriz Rivela, Almudena Hospido, M Teresa Moreira and Gumersindo Feijoo	2006	International Journal of LCA 11 (2), Pg 106-113			
148	Life Cycle Inventory of Slag Cement Concrete	Jan R Prusinski, Medgar L Marceau and Martha G VanGeem	2003	Presented at 8th CANMET/ACI international conference in Fly Ash, Silica Fume and Natural Pozzilans in Concrete			
149	Life cycle inventory of the worldwide aluminium industry with regard to energy consumption and emissions of greenhouse gases, paper 1 - automotive	International primary aluminium institute	2000	International primary aluminium institute			
150	Life cycle of window materials - A comparative assessment	M. Asif, A. Davidson & T. Muneer	2002	School of Engineering, Napier University, Edinburgh			
151	Life Cycle Assessment Data Copper Sheet	European Copper Institute	2005	European Copper Institute			
152	Life Cycle Assessment Data Copper Tube	European Copper Institute	2005	European Copper Institute			
153	Life Cycle Assessment Data Copper Wire	European Copper Institute	2005	European Copper Institute			
154	Lightweight high-performance concrete masonry-block mix design	Babrak Amiri, Gary L Krause and Maher K Tadros	1994	ACI Materials Journal, September-October 1994			
155	Lime Activity CO2 Emissions Factors	EULA - European Lime Association	2003	EULA - European Lime Association			
156	LISA LCA software case study, Nurses Faculty - University of Australia	LISA Software	2000	LISA Software, University of Newcastle, Australia			
157	Low Density polyethylene film LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
158	Low Density polyethylene film LCI Data Summary in Excel format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
159	Low Density polyethylene LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
160	Low Density polyethylene LCI Data Summary in Excel format	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe			
161	Materials, Operational Energy inputs and Net Energy Ratio for Photobiological Hydrogen Production	Greg Burgess, Javier Fernandez-Velasco	2006	International Journal of Hydrogen Energy, Article in Press, doi:10.1016/j.ijhydene.2006.10.055			
162	Mechanical Properties of Concrete with Recycled Coarse Aggregate	Khaldoun Rahal	2007	Building and Environment 42, 2007, Pg 407-415			
163	Metal Resources and Energy	P F Chapman, F Roberts	1983	Butterworth & Co Ltd	408108010		
164	New Gross Energy Requirement Figures for Material Production	E Worrell, R J J van Heijningen et al	1993	Energy Vol 19. No.6 pg 627-640, Pergamon, Elsevier Science Ltd.			
165	New Zealand Building Materials Embodied Energy Coefficients Database: Volume II - Coefficients	Andrew Alcorn, Peter Wood	1998	Centre for Building Performance Research, Victoria University of Wellington			
166	New Zealand Embodied Energy Coefficients	George Baird, Andrew Alcorn, Phil Haslam	1997	Centre for Building Performance Research, Victoria University of Wellington			
167	Nylon 66 LCI Data Summary in Excel format, APME	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe			
168	Nylon 66 LCI Data Summary, APME	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe			
169	Planning for sustainable development and construction	Somerset Trust for Sustainable Development	2000	Somerset Trust for Sustainable development, Town Hall, Langport, Somerset, TA10 9GR			
170	Polyamide 6 (Nylon 6) LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
171	Polyamide 6 (Nylon 6) LCI Data Summary in Excel	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
172	Polyamide 66 (Nylon 66) LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
173	Polyamide 66 (Nylon 66) LCI Data Summary in Excel	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
174	Polycarbonate LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
175	Polycarbonate LCI Data Summary in Excel format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
176	Polyolefin's	I Boustead	2003	APME, Association of Plastics Manufacturers in Europe			
177	Polypropylene injection moulding LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
178	Polypropylene injection moulding LCI Data Summary in Excel format	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe			
179	Polypropylene LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
180	Polypropylene LCI Data Summary in Excel format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
181	Polypropylene orientated film LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
182	Polypropylene orientated film LCI Data Summary in Excel format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
183	Polystyrene (Expandable)(EPS) LCI Data Summary	I Boustead	2006	APME, Association of Plastics Manufacturers in Europe			
184	Polystyrene (Expandable)(EPS) LCI Data Summary in Excel format	I Boustead	2006	APME, Association of Plastics Manufacturers in Europe			
185	Polystyrene (General Purpose)(GPPS) LCI Data Summary	I Boustead	2006	APME, Association of Plastics Manufacturers in Europe			
186	Polystyrene (General Purpose)(GPPS) LCI Data Summary in Excel format	I Boustead	2006	APME, Association of Plastics Manufacturers in Europe			
187	Polystyrene (High Impact) LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
188	Polystyrene (High Impact) LCI Data Summary in Excel format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
189	Polyurethane Flexible foam LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
190	Polyurethane Flexible foam LCI Data Summary in Excel	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
191	Polyurethane Rigid foam LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe			
192	Polyurethane Rigid foam LCI Data Summary in Excel	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe CSIRO Building, Construction and Engineering, Melbourne, Australia as			
193	Product Comparisons Method	G D Salomonsson & M D Ambrose	1996	appearing in Embodied Energy conference at Deakin University 1996			
194	PVC (emulsion polymerised) LCI Data Summary	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe			
195	PVC (emulsion polymerised) LCI Data Summary in Excel	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe			

	REFERENCES					
Ref No.	Title	Author	Year	Organisation/Publisher	ISBN	
196	PVC Calendered Sheet LCI Summary Data	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
197	PVC Calendered Sheet LCI Summary Data in Excel	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
198	PVC Injection Moulding LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
199	PVC Injection Moulding LCI Data Summary in Excel	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
200	PVC pipe LCI data summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
201	PVC pipe LCI data summary in Excel	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
202	PVC Unplasticised Film (UPVC Film) LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
203	PVC Unplasticised Film (UPVC Film) LCI Data Summary in Excel	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
204	Quality based energy contents and carbon coefficients for building materials: A System approach	W P S Dias & S P Pooliyadda	2004	Energy 29, 2004, 561-580		
205	Quantitative assessment of embodied environmental profile of building materials	Gong, Zhiqi & Zhang, Zhihui	2004	Journal of Tsinghua university, Vol. 44, No.9		
206	Quantities for ordering building materials	Cement and concrete institute	2006	Cement and Concrete Institute		
207	Quantity based Energy Contents and Carbon Coefficients for Building Materials: A Systems Approach	W P S Dias & S P Pooliyadda	2001	Energy 29, 2004, pg 561-580		
208	Report for Life Cycle Assessment for Paper and Packaging Waste Management Scenarios in New South V	Tim Grant, Karli L. James, Sven Lundie, Kees Sonneveld	2001	Joint collaboration of Australian Universities, Centre for Design at RMIT University, Victoria University, University of New South Wales		
209	Research on lifecycle fixed resources and exhausted carbon dioxide by buildings in Japan	Noboru Urushizaki, Takeo Kamioka, Chiaki Kaneko & Sate	1994	Proceedings of the CIB conference on buildings and the environment.		
210	Rockwool environmental report: The wind of change	Rockwool limited	1997	Rockwool Limited		
	RT Environmental declaration Cold rolled steel sheet and coils	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
	RT Environmental declaration Colour coated steel sheets and coils	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
213	RT Environmental declaration Metal coated steel sheet and coils	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
	RT Environmental declaration Ruukki's structural hollow sections, steel pipe piles and steel sections	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
	RT Environmental Declaration: External wall element system (Nordicon)	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
	RT Environmental Declaration: Light-weight Sandwich Element System (Panel 3Lock)	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
	RT Environmental Declaration: Rautaruukki Oyj, Hot-rolled frames and bridge structures	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
	RT Environmental Declaration: Rautaruukki Oyj, Roofing sheets and façade claddings (paint coated)	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
		Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
	RT-Environmental declaration Hot rolled steel plates, sheet and coils	Rautaruukki Oyj; www.ruukki.com	2007	Rautaruukki Oyj; www.ruukki.com		
221	Sikament 160 Technical data Sheet	Sika Limited	2005	Sika Limited		
222	Sikkens Cetol BL 21 cradle to gate data	Imperial College Life Cycle Assessment Group	2003	Akzo Nobel Specialist Coatings		
223	Sikkens Cetol BL 31 cradle to gate data	Imperial College Life Cycle Assessment Group	2003	Akzo Nobel Specialist Coatings		
224 225	Sikkens Cetol BL opaque cradle to gate data Sikkens Cetol BL Primer cradle to gate data	Imperial College Life Cycle Assessment Group Imperial College Life Cycle Assessment Group	2003	Akzo Nobel Specialist Coatings Akzo Nobel Specialist Coatings		
225	Sikkens Cetol WF 955 cradle to gate date	Imperial College Life Cycle Assessment Group	2003	Akzo Nobel Specialist Coatings		
220	Sikkens Cetol WP 560 cradle to gate data	Imperial College Life Cycle Assessment Group	2003	Akzo Nobel Specialist Coatings		
228	Sikkens Rubbol WF 380 cradle to gate data	Imperial College Life Cycle Assessment Group	2003	Akzo Nobel Specialist Coatings		
229	Suspension polymerised PVC LCI Data Summary	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe		
230	Suspension polymerised PVC LCI Data Summary	I Boustead	1999	APME, Association of Plastics Manufacturers in Europe		
230	Sustainability analysis of window frames	M Asif, T Muneer & J Kubie	2005	Napier university		
	Sustainable homes: Embodied energy in residential property development, A guide for registered social lar		1999	Sustainable homes, http://www.sustainablehomes.co.uk		
233	Textile mass balances and product life cycles; Ref S5471	British Textile Technology Group	1999	British Textile Technology Group		
234	The Energy Embodied in Building Materials - updated New Zealand coefficients and their significance	George Baird, Andrew Alcorn, Phil Haslam	1997	Centre for Building Performance Research, Victoria University of Wellington		
235	The European Steel Industry and Climate Change	EUROFER, European Confederation of Iron and Steel Ind	2000	EUROFER, European Confederation of Iron and Steel Industries		
236	The Finnish metals industry and the environment	Jyri Seppala, Sirkka Koskela, Matti Melanen, Matti Palperi	2002	Resources conservation and recycling (Journal), Elsevier		
237	The Future of the European Aluminium Industry: A MARKAL Energy and Material Flow Analysis	D J Gielen	1998	ECN-Policy Studies		
238	The Life Cycle of copper, its co-products and by-products	Robert U Ayres, Leslie W Ayres and ingrid Rade	2002	International institute for Environment and Development		
239	The measure of our sustainability, Report of the world steel industry 2004	International Iron and Steel Institute	2003	IISI, International Iron and Steel Institute		
240	Thermoformed, Expanded Polystyrene LCI Data Summary	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
241	Thermoformed, Expanded Polystyrene LCI Data Summary in Excel format	I Boustead	2005	APME, Association of Plastics Manufacturers in Europe		
242	Timber as a building material - An environmental comparison against synthetic building materials	Phil Townsend and Chris Wagner	2002	National Association of Forest Industries Ltd		
243	Towards the holistic assessment of building performance based on an integrated systems approach	Stephane Citherlet	2001	Swiss federal institute of technology		
244	What LCA can tell us about the cement industry	Steven B. Young, Shannon Turnbul & Andrea Russell	2002	Five winds international; World business council for sustainable development		
245	Window and advanced glazing systems life cycle assessment	Stephane Citerlet, Francesca Di Gulielmo & Jean-Bernard	2000	Energy & Buildings 32 pg 225-234		
246	Wood based building materials and atmospheric carbon emissions	Andrew H. Buchanan & S. Bry Levine	1999	Environmental Science & Policy 2 (1999) 427±437		
247	World steel life cycle inventory - IISI methodology report	IISI - International Iron & Steel Institute	2000	IISI - International Iron & Steel Institute		